Skew log-concavity of the Boros-Moll sequences

Abstract Let { T ( n , k ) } 0 ≤ n < ∞ , 0 ≤ k ≤ n $\{T(n,k)\}_{0\leq n < \infty, 0\leq k \leq n} $ be a triangular array of numbers. We say that T ( n , k ) $T(n,k)$ is skew log-concave if for any fixed n, the sequence { T ( n + k , k ) } 0 ≤ k < ∞ $\{T(n+k,k)\}_{0 \leq k <\infty}$ is l...

Full description

Bibliographic Details
Main Author: Eric H Liu
Format: Article
Language:English
Published: SpringerOpen 2017-05-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-017-1394-z
id doaj-f338b9c16311412ab1453f41ffea788c
record_format Article
spelling doaj-f338b9c16311412ab1453f41ffea788c2020-11-24T21:57:44ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-05-01201711510.1186/s13660-017-1394-zSkew log-concavity of the Boros-Moll sequencesEric H Liu0School of Business Information, Shanghai University of International Business and EconomicsAbstract Let { T ( n , k ) } 0 ≤ n < ∞ , 0 ≤ k ≤ n $\{T(n,k)\}_{0\leq n < \infty, 0\leq k \leq n} $ be a triangular array of numbers. We say that T ( n , k ) $T(n,k)$ is skew log-concave if for any fixed n, the sequence { T ( n + k , k ) } 0 ≤ k < ∞ $\{T(n+k,k)\}_{0 \leq k <\infty}$ is log-concave. In this paper, we show that the Boros-Moll sequences are almost skew log-concave.http://link.springer.com/article/10.1186/s13660-017-1394-zlog-concavityskew log-concavitythe Boros-Moll sequence
collection DOAJ
language English
format Article
sources DOAJ
author Eric H Liu
spellingShingle Eric H Liu
Skew log-concavity of the Boros-Moll sequences
Journal of Inequalities and Applications
log-concavity
skew log-concavity
the Boros-Moll sequence
author_facet Eric H Liu
author_sort Eric H Liu
title Skew log-concavity of the Boros-Moll sequences
title_short Skew log-concavity of the Boros-Moll sequences
title_full Skew log-concavity of the Boros-Moll sequences
title_fullStr Skew log-concavity of the Boros-Moll sequences
title_full_unstemmed Skew log-concavity of the Boros-Moll sequences
title_sort skew log-concavity of the boros-moll sequences
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2017-05-01
description Abstract Let { T ( n , k ) } 0 ≤ n < ∞ , 0 ≤ k ≤ n $\{T(n,k)\}_{0\leq n < \infty, 0\leq k \leq n} $ be a triangular array of numbers. We say that T ( n , k ) $T(n,k)$ is skew log-concave if for any fixed n, the sequence { T ( n + k , k ) } 0 ≤ k < ∞ $\{T(n+k,k)\}_{0 \leq k <\infty}$ is log-concave. In this paper, we show that the Boros-Moll sequences are almost skew log-concave.
topic log-concavity
skew log-concavity
the Boros-Moll sequence
url http://link.springer.com/article/10.1186/s13660-017-1394-z
work_keys_str_mv AT erichliu skewlogconcavityoftheborosmollsequences
_version_ 1725853880574541824