Skew log-concavity of the Boros-Moll sequences
Abstract Let { T ( n , k ) } 0 ≤ n < ∞ , 0 ≤ k ≤ n $\{T(n,k)\}_{0\leq n < \infty, 0\leq k \leq n} $ be a triangular array of numbers. We say that T ( n , k ) $T(n,k)$ is skew log-concave if for any fixed n, the sequence { T ( n + k , k ) } 0 ≤ k < ∞ $\{T(n+k,k)\}_{0 \leq k <\infty}$ is l...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-05-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-017-1394-z |
id |
doaj-f338b9c16311412ab1453f41ffea788c |
---|---|
record_format |
Article |
spelling |
doaj-f338b9c16311412ab1453f41ffea788c2020-11-24T21:57:44ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-05-01201711510.1186/s13660-017-1394-zSkew log-concavity of the Boros-Moll sequencesEric H Liu0School of Business Information, Shanghai University of International Business and EconomicsAbstract Let { T ( n , k ) } 0 ≤ n < ∞ , 0 ≤ k ≤ n $\{T(n,k)\}_{0\leq n < \infty, 0\leq k \leq n} $ be a triangular array of numbers. We say that T ( n , k ) $T(n,k)$ is skew log-concave if for any fixed n, the sequence { T ( n + k , k ) } 0 ≤ k < ∞ $\{T(n+k,k)\}_{0 \leq k <\infty}$ is log-concave. In this paper, we show that the Boros-Moll sequences are almost skew log-concave.http://link.springer.com/article/10.1186/s13660-017-1394-zlog-concavityskew log-concavitythe Boros-Moll sequence |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Eric H Liu |
spellingShingle |
Eric H Liu Skew log-concavity of the Boros-Moll sequences Journal of Inequalities and Applications log-concavity skew log-concavity the Boros-Moll sequence |
author_facet |
Eric H Liu |
author_sort |
Eric H Liu |
title |
Skew log-concavity of the Boros-Moll sequences |
title_short |
Skew log-concavity of the Boros-Moll sequences |
title_full |
Skew log-concavity of the Boros-Moll sequences |
title_fullStr |
Skew log-concavity of the Boros-Moll sequences |
title_full_unstemmed |
Skew log-concavity of the Boros-Moll sequences |
title_sort |
skew log-concavity of the boros-moll sequences |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2017-05-01 |
description |
Abstract Let { T ( n , k ) } 0 ≤ n < ∞ , 0 ≤ k ≤ n $\{T(n,k)\}_{0\leq n < \infty, 0\leq k \leq n} $ be a triangular array of numbers. We say that T ( n , k ) $T(n,k)$ is skew log-concave if for any fixed n, the sequence { T ( n + k , k ) } 0 ≤ k < ∞ $\{T(n+k,k)\}_{0 \leq k <\infty}$ is log-concave. In this paper, we show that the Boros-Moll sequences are almost skew log-concave. |
topic |
log-concavity skew log-concavity the Boros-Moll sequence |
url |
http://link.springer.com/article/10.1186/s13660-017-1394-z |
work_keys_str_mv |
AT erichliu skewlogconcavityoftheborosmollsequences |
_version_ |
1725853880574541824 |