Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis
<p>Abstract</p> <p>Background</p> <p>We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET) gene. NET is the target of psychotropic substances, such as tricyclic antidepressant...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2009-04-01
|
Series: | BMC Genomics |
Online Access: | http://www.biomedcentral.com/1471-2164/10/151 |
id |
doaj-f3277aa397054428b23fee4e2acdae85 |
---|---|
record_format |
Article |
spelling |
doaj-f3277aa397054428b23fee4e2acdae852020-11-24T20:41:59ZengBMCBMC Genomics1471-21642009-04-0110115110.1186/1471-2164-10-151Norepinephrine transport-mediated gene expression in noradrenergic neurogenesisSieber-Blum MayaCaron Marc GHu Yao<p>Abstract</p> <p>Background</p> <p>We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET) gene. NET is the target of psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit hyperactivity disorder (ADHD). NET function in adult noradrenergic neurons of the peripheral and central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during embryogenesis norepinephrine (NE) transport promotes differentiation of neural crest stem cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block noradrenergic differentiation. While the structure of NET und the regulation of NET function are well described, little is known about downstream target genes of norepinephrine (NE) transport.</p> <p>Results</p> <p>We have prepared gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO) mouse neural crest cells using long serial analysis of gene expression (LongSAGE). Comparison analyses have identified a number of important differentially expressed genes, including genes relevant to neural crest formation, noradrenergic neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic protein (BMP) signaling pathway, the <it>Phox2b </it>binding partner <it>Tlx2</it>, the ubiquitin ligase <it>Praja2</it>, and the inhibitor of Notch signaling, <it>Numbl</it>. Differentially expressed genes that are likely to contribute to the NETKO phenotype include dopamine-β-hydroxylase (<it>Dbh</it>), tyrosine hydroxylase (<it>Th</it>), the peptide transmitter 'cocaine and amphetamine regulated transcript' (<it>Cart</it>), and the serotonin receptor subunit <it>Htr3a</it>. Real-time PCR confirmed differential expression of key genes not only in neural crest cells, but also in the adult superior cervical ganglion and locus ceruleus. In addition to known genes we have identified novel differentially expressed genes and thus provide a valuable database for future studies.</p> <p>Conclusion</p> <p>Loss of NET function during embryonic development in the mouse deregulates signaling pathways that are critically involved in neural crest formation and noradrenergic cell differentiation. The data further suggest deregulation of signaling pathways in the development and/or function of the NET-deficient peripheral, central and enteric nervous systems.</p> http://www.biomedcentral.com/1471-2164/10/151 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sieber-Blum Maya Caron Marc G Hu Yao |
spellingShingle |
Sieber-Blum Maya Caron Marc G Hu Yao Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis BMC Genomics |
author_facet |
Sieber-Blum Maya Caron Marc G Hu Yao |
author_sort |
Sieber-Blum Maya |
title |
Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis |
title_short |
Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis |
title_full |
Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis |
title_fullStr |
Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis |
title_full_unstemmed |
Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis |
title_sort |
norepinephrine transport-mediated gene expression in noradrenergic neurogenesis |
publisher |
BMC |
series |
BMC Genomics |
issn |
1471-2164 |
publishDate |
2009-04-01 |
description |
<p>Abstract</p> <p>Background</p> <p>We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET) gene. NET is the target of psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit hyperactivity disorder (ADHD). NET function in adult noradrenergic neurons of the peripheral and central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during embryogenesis norepinephrine (NE) transport promotes differentiation of neural crest stem cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block noradrenergic differentiation. While the structure of NET und the regulation of NET function are well described, little is known about downstream target genes of norepinephrine (NE) transport.</p> <p>Results</p> <p>We have prepared gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO) mouse neural crest cells using long serial analysis of gene expression (LongSAGE). Comparison analyses have identified a number of important differentially expressed genes, including genes relevant to neural crest formation, noradrenergic neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic protein (BMP) signaling pathway, the <it>Phox2b </it>binding partner <it>Tlx2</it>, the ubiquitin ligase <it>Praja2</it>, and the inhibitor of Notch signaling, <it>Numbl</it>. Differentially expressed genes that are likely to contribute to the NETKO phenotype include dopamine-β-hydroxylase (<it>Dbh</it>), tyrosine hydroxylase (<it>Th</it>), the peptide transmitter 'cocaine and amphetamine regulated transcript' (<it>Cart</it>), and the serotonin receptor subunit <it>Htr3a</it>. Real-time PCR confirmed differential expression of key genes not only in neural crest cells, but also in the adult superior cervical ganglion and locus ceruleus. In addition to known genes we have identified novel differentially expressed genes and thus provide a valuable database for future studies.</p> <p>Conclusion</p> <p>Loss of NET function during embryonic development in the mouse deregulates signaling pathways that are critically involved in neural crest formation and noradrenergic cell differentiation. The data further suggest deregulation of signaling pathways in the development and/or function of the NET-deficient peripheral, central and enteric nervous systems.</p> |
url |
http://www.biomedcentral.com/1471-2164/10/151 |
work_keys_str_mv |
AT sieberblummaya norepinephrinetransportmediatedgeneexpressioninnoradrenergicneurogenesis AT caronmarcg norepinephrinetransportmediatedgeneexpressioninnoradrenergicneurogenesis AT huyao norepinephrinetransportmediatedgeneexpressioninnoradrenergicneurogenesis |
_version_ |
1716823597523140608 |