Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada
<p>The oil sands (OS) of Alberta, Canada, which are classified as unconventional oil, are the third-largest oil reserves in the world. We describe here a 6-year effort to improve the emissions data used for air quality (AQ) modeling of the roughly 100 km  × &thinsp...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-07-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/18/10459/2018/acp-18-10459-2018.pdf |
id |
doaj-f2f7156156914a37b2538f5016d40a76 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. Zhang M. D. Moran Q. Zheng P. A. Makar P. Baratzadeh G. Marson P. Liu S.-M. Li |
spellingShingle |
J. Zhang M. D. Moran Q. Zheng P. A. Makar P. Baratzadeh G. Marson P. Liu S.-M. Li Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada Atmospheric Chemistry and Physics |
author_facet |
J. Zhang M. D. Moran Q. Zheng P. A. Makar P. Baratzadeh G. Marson P. Liu S.-M. Li |
author_sort |
J. Zhang |
title |
Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada |
title_short |
Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada |
title_full |
Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada |
title_fullStr |
Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada |
title_full_unstemmed |
Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada |
title_sort |
emissions preparation and analysis for multiscale air quality modeling over the athabasca oil sands region of alberta, canada |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2018-07-01 |
description |
<p>The oil sands (OS) of Alberta, Canada, which are classified as unconventional oil,
are the third-largest oil reserves in the world. We describe here a 6-year
effort to improve the emissions data used for air quality (AQ) modeling of
the roughly 100 km  ×  100 km oil extraction and processing
industrial complex operating in the Athabasca Oil Sands Region (AOSR) of
northeastern Alberta. This paper reviews the national, provincial, and
sub-provincial emissions inventories that were available during the three
phases of the study, supplemented by hourly SO<sub>2</sub> and
NO<sub><i>x</i></sub> emissions and stack characteristics for larger point
sources measured by a continuous emission monitoring system (CEMS), as well as daily
reports of SO<sub>2</sub> from one AOSR facility for a 1-week period during
a 2013 field campaign when the facility experienced upset conditions. Next it
describes the creation of several detailed hybrid emissions inventories and
the generation of model-ready emissions input files for the Global
Environmental Multiscale–Modelling Air quality and CHemistry (GEM-MACH) AQ
modeling system that were used during the 2013 field study and for various
post-campaign GEM-MACH sensitivity studies, in particular for a
high-resolution model domain with 2.5 km grid spacing covering much of
western Canada and centered over the AOSR. Lastly, it compares inventory-based
bottom-up emissions with aircraft-observation-based top-down emissions
estimates. Results show that emissions values obtained from different data
sources can differ significantly, such as a possible 10-fold difference in
PM<sub>2.5</sub> emissions and approximately 40 and 20 % differences for total
VOC (volatile organic compound) and SO<sub>2</sub> emissions. A novel emissions-processing approach was also
employed to allocate emissions spatially within six large AOSR mining
facilities in order to address the urban-scale spatial extent of the
facilities and the high-resolution 2.5 km model grid. Gridded facility- and
process-specific spatial surrogate fields that were generated using spatial
information from GIS (geographic information system) shapefiles and satellite
images were used to allocate non-smokestack emissions for each facility to
multiple grid cells instead of treating these emissions as point sources and
allocating them to a single grid cell as is normally done. Facility- and
process-specific temporal profiles and VOC speciation profiles were also
developed. The pre-2013 vegetation and land-use databases normally used to
estimate biogenic emissions and meteorological surface properties were
modified to account for the rapid change in land use in the study area due to
marked, year-by-year changes in surface mining activities, including the 2013
opening of a new mine. Lastly, mercury emissions data were also processed in
addition to the seven criteria-air-contaminant (CAC) species (NO<sub><i>x</i></sub>,
VOC, SO<sub>2</sub>, NH<sub>3</sub>, CO, PM<sub>2.5</sub>, and PM<sub>10</sub>) to support
AOSR mercury modeling activities. Six GEM-MACH modeling papers in this
special issue used some of these new sets of emissions and land-use input
files.</p> |
url |
https://www.atmos-chem-phys.net/18/10459/2018/acp-18-10459-2018.pdf |
work_keys_str_mv |
AT jzhang emissionspreparationandanalysisformultiscaleairqualitymodelingovertheathabascaoilsandsregionofalbertacanada AT mdmoran emissionspreparationandanalysisformultiscaleairqualitymodelingovertheathabascaoilsandsregionofalbertacanada AT qzheng emissionspreparationandanalysisformultiscaleairqualitymodelingovertheathabascaoilsandsregionofalbertacanada AT pamakar emissionspreparationandanalysisformultiscaleairqualitymodelingovertheathabascaoilsandsregionofalbertacanada AT pbaratzadeh emissionspreparationandanalysisformultiscaleairqualitymodelingovertheathabascaoilsandsregionofalbertacanada AT gmarson emissionspreparationandanalysisformultiscaleairqualitymodelingovertheathabascaoilsandsregionofalbertacanada AT pliu emissionspreparationandanalysisformultiscaleairqualitymodelingovertheathabascaoilsandsregionofalbertacanada AT smli emissionspreparationandanalysisformultiscaleairqualitymodelingovertheathabascaoilsandsregionofalbertacanada |
_version_ |
1725501324173246464 |
spelling |
doaj-f2f7156156914a37b2538f5016d40a762020-11-24T23:43:30ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-07-0118104591048110.5194/acp-18-10459-2018Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, CanadaJ. Zhang0M. D. Moran1Q. Zheng2P. A. Makar3P. Baratzadeh4G. Marson5P. Liu6S.-M. Li7Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, CanadaAir Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, CanadaAir Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, CanadaAir Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, CanadaPollutant Inventories and Reporting Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, CanadaAir Quality Research Division, Environment and Climate Change Canada, 335 River Road, Ottawa, ON, K1A 0H3, CanadaAir Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, CanadaAir Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada<p>The oil sands (OS) of Alberta, Canada, which are classified as unconventional oil, are the third-largest oil reserves in the world. We describe here a 6-year effort to improve the emissions data used for air quality (AQ) modeling of the roughly 100 km  ×  100 km oil extraction and processing industrial complex operating in the Athabasca Oil Sands Region (AOSR) of northeastern Alberta. This paper reviews the national, provincial, and sub-provincial emissions inventories that were available during the three phases of the study, supplemented by hourly SO<sub>2</sub> and NO<sub><i>x</i></sub> emissions and stack characteristics for larger point sources measured by a continuous emission monitoring system (CEMS), as well as daily reports of SO<sub>2</sub> from one AOSR facility for a 1-week period during a 2013 field campaign when the facility experienced upset conditions. Next it describes the creation of several detailed hybrid emissions inventories and the generation of model-ready emissions input files for the Global Environmental Multiscale–Modelling Air quality and CHemistry (GEM-MACH) AQ modeling system that were used during the 2013 field study and for various post-campaign GEM-MACH sensitivity studies, in particular for a high-resolution model domain with 2.5 km grid spacing covering much of western Canada and centered over the AOSR. Lastly, it compares inventory-based bottom-up emissions with aircraft-observation-based top-down emissions estimates. Results show that emissions values obtained from different data sources can differ significantly, such as a possible 10-fold difference in PM<sub>2.5</sub> emissions and approximately 40 and 20 % differences for total VOC (volatile organic compound) and SO<sub>2</sub> emissions. A novel emissions-processing approach was also employed to allocate emissions spatially within six large AOSR mining facilities in order to address the urban-scale spatial extent of the facilities and the high-resolution 2.5 km model grid. Gridded facility- and process-specific spatial surrogate fields that were generated using spatial information from GIS (geographic information system) shapefiles and satellite images were used to allocate non-smokestack emissions for each facility to multiple grid cells instead of treating these emissions as point sources and allocating them to a single grid cell as is normally done. Facility- and process-specific temporal profiles and VOC speciation profiles were also developed. The pre-2013 vegetation and land-use databases normally used to estimate biogenic emissions and meteorological surface properties were modified to account for the rapid change in land use in the study area due to marked, year-by-year changes in surface mining activities, including the 2013 opening of a new mine. Lastly, mercury emissions data were also processed in addition to the seven criteria-air-contaminant (CAC) species (NO<sub><i>x</i></sub>, VOC, SO<sub>2</sub>, NH<sub>3</sub>, CO, PM<sub>2.5</sub>, and PM<sub>10</sub>) to support AOSR mercury modeling activities. Six GEM-MACH modeling papers in this special issue used some of these new sets of emissions and land-use input files.</p>https://www.atmos-chem-phys.net/18/10459/2018/acp-18-10459-2018.pdf |