Design, Analysis, and Experimental Evaluation of a Double Coil Magnetorheological Fluid Damper

A magnetorheological (MR) damper is one of the most advanced devices used in a semiactive control system to mitigate unwanted vibration because the damping force can be controlled by changing the viscosity of the internal magnetorheological (MR) fluids. This study proposes a typical double coil MR d...

Full description

Bibliographic Details
Main Authors: Guoliang Hu, Fengshuo Liu, Zheng Xie, Ming Xu
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2016/4184726
Description
Summary:A magnetorheological (MR) damper is one of the most advanced devices used in a semiactive control system to mitigate unwanted vibration because the damping force can be controlled by changing the viscosity of the internal magnetorheological (MR) fluids. This study proposes a typical double coil MR damper where the damping force and dynamic range were derived from a quasistatic model based on the Bingham model of MR fluid. A finite element model was built to study the performance of this double coil MR damper by investigating seven different piston configurations, including the numbers and shapes of their chamfered ends. The objective function of an optimization problem was proposed and then an optimization procedure was constructed using the ANSYS parametric design language (APDL) to obtain the optimal damping performance of a double coil MR damper. Furthermore, experimental tests were also carried out, and the effects of the same direction and reverse direction of the currents on the damping forces were also analyzed. The relevant results of this analysis can easily be extended to the design of other types of MR dampers.
ISSN:1070-9622
1875-9203