Design and Modeling of a Parent Big STAR Robot Platform that Carries a Child RSTAR

In this paper we present a wheeled robot platform for child-parent robot collaboration. The new robot, named Big STAR (BSTAR), is fitted with a tail that can act as a ramp to carry and deploy a child RSTAR that can crawl between small cracks and underneath obstacles. Both robots possess sprawling ca...

Full description

Bibliographic Details
Main Authors: Daniel Yacoby, Liran Yehezkel, Ori Inbar, David Zarrouk
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/24/8767
Description
Summary:In this paper we present a wheeled robot platform for child-parent robot collaboration. The new robot, named Big STAR (BSTAR), is fitted with a tail that can act as a ramp to carry and deploy a child RSTAR that can crawl between small cracks and underneath obstacles. Both robots possess sprawling capabilities inspired from insects, enabling them to transform their external geometry and dynamics to overcome a variety of obstacles. The BSTAR can travel at speeds of up to 1.4 m/s, carry payloads of more than five kilograms and travel over rough terrains. The collaboration between the two robots substantially increases their navigability and their capability to overcome obstacles. It increases their working distance and scouting area since the larger robot can act as a charging point for the smaller one. We first describe the design of the newly developed parent BSTAR robot and provide a kinematic and dynamic analysis that determines the force requirements of the robots when collaborating, followed by an evaluation of their mechanical and electrical requirements. We show that under multiple challenging scenarios the robot pair can successfully overcome a variety of obstacles.
ISSN:2076-3417