An Efficient Minimal Text Segmentation Method for URL Domain Names
Text segmentation of the URL domain name is a straightforward and convenient method to analyze users’ online behaviors and is crucial to determine their areas of interest. However, the performance of popular word segmentation tools is relatively low due to the unique structure of the website domain...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Scientific Programming |
Online Access: | http://dx.doi.org/10.1155/2021/9946729 |
id |
doaj-f2a55c95657647c8b0005a1f8b42162c |
---|---|
record_format |
Article |
spelling |
doaj-f2a55c95657647c8b0005a1f8b42162c2021-07-12T02:13:37ZengHindawi LimitedScientific Programming1875-919X2021-01-01202110.1155/2021/9946729An Efficient Minimal Text Segmentation Method for URL Domain NamesYiqian Li0Tao Du1Lianjiang Zhu2Shouning Qu3School of Information Science and EngineeringSchool of Information Science and EngineeringSchool of Information Science and EngineeringSchool of Information Science and EngineeringText segmentation of the URL domain name is a straightforward and convenient method to analyze users’ online behaviors and is crucial to determine their areas of interest. However, the performance of popular word segmentation tools is relatively low due to the unique structure of the website domain name (such as extremely short lengths, irregular names, and no contextual relationship). To address this issue, this paper proposes an efficient minimal text segmentation (EMTS) method for URL domain names to achieve efficient adaptive text mining. We first designed a targeted hierarchical task model to reduce noise interference in minimal texts. We then presented a novel method of integrating conflict game into the two-directional maximum matching algorithm, which can make the words with higher weight and greater probability to be selected, thereby enhancing the accuracy of recognition. Next, Chinese Pinyin and English mapping were embedded in the word segmentation rules. Besides, we incorporated a correction factor that considers the text length into the F1-score to optimize the performance evaluation of text segmentation. The experimental results show that the EMTS yielded around 20 percentage points improvement with other word segmentation tools in terms of accuracy and topic extraction, providing high-quality data for the subsequent text analysis.http://dx.doi.org/10.1155/2021/9946729 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yiqian Li Tao Du Lianjiang Zhu Shouning Qu |
spellingShingle |
Yiqian Li Tao Du Lianjiang Zhu Shouning Qu An Efficient Minimal Text Segmentation Method for URL Domain Names Scientific Programming |
author_facet |
Yiqian Li Tao Du Lianjiang Zhu Shouning Qu |
author_sort |
Yiqian Li |
title |
An Efficient Minimal Text Segmentation Method for URL Domain Names |
title_short |
An Efficient Minimal Text Segmentation Method for URL Domain Names |
title_full |
An Efficient Minimal Text Segmentation Method for URL Domain Names |
title_fullStr |
An Efficient Minimal Text Segmentation Method for URL Domain Names |
title_full_unstemmed |
An Efficient Minimal Text Segmentation Method for URL Domain Names |
title_sort |
efficient minimal text segmentation method for url domain names |
publisher |
Hindawi Limited |
series |
Scientific Programming |
issn |
1875-919X |
publishDate |
2021-01-01 |
description |
Text segmentation of the URL domain name is a straightforward and convenient method to analyze users’ online behaviors and is crucial to determine their areas of interest. However, the performance of popular word segmentation tools is relatively low due to the unique structure of the website domain name (such as extremely short lengths, irregular names, and no contextual relationship). To address this issue, this paper proposes an efficient minimal text segmentation (EMTS) method for URL domain names to achieve efficient adaptive text mining. We first designed a targeted hierarchical task model to reduce noise interference in minimal texts. We then presented a novel method of integrating conflict game into the two-directional maximum matching algorithm, which can make the words with higher weight and greater probability to be selected, thereby enhancing the accuracy of recognition. Next, Chinese Pinyin and English mapping were embedded in the word segmentation rules. Besides, we incorporated a correction factor that considers the text length into the F1-score to optimize the performance evaluation of text segmentation. The experimental results show that the EMTS yielded around 20 percentage points improvement with other word segmentation tools in terms of accuracy and topic extraction, providing high-quality data for the subsequent text analysis. |
url |
http://dx.doi.org/10.1155/2021/9946729 |
work_keys_str_mv |
AT yiqianli anefficientminimaltextsegmentationmethodforurldomainnames AT taodu anefficientminimaltextsegmentationmethodforurldomainnames AT lianjiangzhu anefficientminimaltextsegmentationmethodforurldomainnames AT shouningqu anefficientminimaltextsegmentationmethodforurldomainnames AT yiqianli efficientminimaltextsegmentationmethodforurldomainnames AT taodu efficientminimaltextsegmentationmethodforurldomainnames AT lianjiangzhu efficientminimaltextsegmentationmethodforurldomainnames AT shouningqu efficientminimaltextsegmentationmethodforurldomainnames |
_version_ |
1721307963481653248 |