Diversity and distribution of extra-floral nectaries in the cerrado savanna vegetation of Brazil

Aim. Throughout evolutionary history, plants and animals have evolved alongside one another. This is especially apparent when considering mutualistic relationships such as between plants with extra-floral nectaries (EFNs, glands on leaves or stems that secrete nectar) and the ants that visit them. A...

Full description

Bibliographic Details
Main Authors: John Boudouris, Simon A. Queenborough
Format: Article
Language:English
Published: PeerJ Inc. 2013-11-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/219.pdf
Description
Summary:Aim. Throughout evolutionary history, plants and animals have evolved alongside one another. This is especially apparent when considering mutualistic relationships such as between plants with extra-floral nectaries (EFNs, glands on leaves or stems that secrete nectar) and the ants that visit them. Ants are attracted by the nectar and then protect the plant against destructive herbivores. The distribution of these plants is of particular interest, because it can provide insights into the evolutionary history of this unique trait and the plants that possess it. In this study, we investigated factors driving the distribution of woody plants with EFNs in the cerrado vegetation of Brazil.Location. BrazilMethods. We used a database detailing the incidence of 849 plant species at 367 cerrado sites throughout Brazil. We determined which species possessed EFNs and mapped their distributions. We tested for correlations between the proportion of EFN species at each site and (i) three environmental variables (mean annual temperature, mean annual precipitation, and the precipitation in the driest quarter of the year), (ii) a broad soil classification, and (iii) the total species diversity of each site.Results. We found a wide range in the proportion of EFN species at any one site (0–57%). However, whilst low diversity sites had wide variation in the number of EFN species, high diversity sites all had few EFN species. The proportion of EFN species was positively correlated with absolute latitude and negatively correlated with longitude. When accounting for total species diversity, the proportion of EFN species per site was negatively correlated with precipitation in the driest quarter of the year and positively correlated with temperature range.Main Conclusions. These results suggest either that herbivore pressure may be lower in drier sites, or that ants are not as dominant in these locations, or that plant lineages at these sites were unable to evolve EFNs.
ISSN:2167-8359