Computing Classical-Quantum Channel Capacity Using Blahut–Arimoto Type Algorithm: A Theoretical and Numerical Analysis

Based on Arimoto’s work in 1972, we propose an iterative algorithm for computing the capacity of a discrete memoryless classical-quantum channel with a finite input alphabet and a finite dimensional output, which we call the Blahut−Arimoto algorithm for classical-quantum channel,...

Full description

Bibliographic Details
Main Authors: Haobo Li, Ning Cai
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/2/222
id doaj-f28333603bba4753b2c7387f40dbbc8c
record_format Article
spelling doaj-f28333603bba4753b2c7387f40dbbc8c2020-11-25T01:45:08ZengMDPI AGEntropy1099-43002020-02-0122222210.3390/e22020222e22020222Computing Classical-Quantum Channel Capacity Using Blahut–Arimoto Type Algorithm: A Theoretical and Numerical AnalysisHaobo Li0Ning Cai1School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, ChinaSchool of Information Science and Technology, ShanghaiTech University, Shanghai 201210, ChinaBased on Arimoto&#8217;s work in 1972, we propose an iterative algorithm for computing the capacity of a discrete memoryless classical-quantum channel with a finite input alphabet and a finite dimensional output, which we call the Blahut&#8722;Arimoto algorithm for classical-quantum channel, and an input cost constraint is considered. We show that, to reach <inline-formula> <math display="inline"> <semantics> <mi>&#949;</mi> </semantics> </math> </inline-formula> accuracy, the iteration complexity of the algorithm is upper bounded by <inline-formula> <math display="inline"> <semantics> <mfrac> <mrow> <mo form="prefix">log</mo> <mi>n</mi> <mo form="prefix">log</mo> <mi>&#949;</mi> </mrow> <mi>&#949;</mi> </mfrac> </semantics> </math> </inline-formula> where <i>n</i> is the size of the input alphabet. In particular, when the output state <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo>{</mo> <msub> <mi>&#961;</mi> <mi>x</mi> </msub> <mo>}</mo> </mrow> <mrow> <mi>x</mi> <mo>&#8712;</mo> <mi mathvariant="script">X</mi> </mrow> </msub> </semantics> </math> </inline-formula> is linearly independent in complex matrix space, the algorithm has a geometric convergence. We also show that the algorithm reaches an <inline-formula> <math display="inline"> <semantics> <mi>&#949;</mi> </semantics> </math> </inline-formula> accurate solution with a complexity of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <mfrac> <mrow> <msup> <mi>m</mi> <mn>3</mn> </msup> <mo form="prefix">log</mo> <mi>n</mi> <mo form="prefix">log</mo> <mi>&#949;</mi> </mrow> <mi>&#949;</mi> </mfrac> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <msup> <mi>m</mi> <mn>3</mn> </msup> <mo form="prefix">log</mo> <mi>&#949;</mi> <msub> <mo form="prefix">log</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>&#8722;</mo> <mi>&#948;</mi> <mo>)</mo> </mrow> </msub> <mfrac> <mi>&#949;</mi> <mrow> <mi>D</mi> <mo>(</mo> <msup> <mi>p</mi> <mo>*</mo> </msup> <mo>|</mo> <mo>|</mo> <msup> <mi>p</mi> <msub> <mi>N</mi> <mn>0</mn> </msub> </msup> <mo>)</mo> </mrow> </mfrac> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> in the special case, where <i>m</i> is the output dimension, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>(</mo> <msup> <mi>p</mi> <mo>*</mo> </msup> <mo>|</mo> <mo>|</mo> <msup> <mi>p</mi> <msub> <mi>N</mi> <mn>0</mn> </msub> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is the relative entropy of two distributions, and <inline-formula> <math display="inline"> <semantics> <mi>&#948;</mi> </semantics> </math> </inline-formula> is a positive number. Numerical experiments were performed and an approximate solution for the binary two-dimensional case was analysed.https://www.mdpi.com/1099-4300/22/2/222capacityclassical-quantum channelblahut–arimoto type algorithmconvergence speed
collection DOAJ
language English
format Article
sources DOAJ
author Haobo Li
Ning Cai
spellingShingle Haobo Li
Ning Cai
Computing Classical-Quantum Channel Capacity Using Blahut–Arimoto Type Algorithm: A Theoretical and Numerical Analysis
Entropy
capacity
classical-quantum channel
blahut–arimoto type algorithm
convergence speed
author_facet Haobo Li
Ning Cai
author_sort Haobo Li
title Computing Classical-Quantum Channel Capacity Using Blahut–Arimoto Type Algorithm: A Theoretical and Numerical Analysis
title_short Computing Classical-Quantum Channel Capacity Using Blahut–Arimoto Type Algorithm: A Theoretical and Numerical Analysis
title_full Computing Classical-Quantum Channel Capacity Using Blahut–Arimoto Type Algorithm: A Theoretical and Numerical Analysis
title_fullStr Computing Classical-Quantum Channel Capacity Using Blahut–Arimoto Type Algorithm: A Theoretical and Numerical Analysis
title_full_unstemmed Computing Classical-Quantum Channel Capacity Using Blahut–Arimoto Type Algorithm: A Theoretical and Numerical Analysis
title_sort computing classical-quantum channel capacity using blahut–arimoto type algorithm: a theoretical and numerical analysis
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2020-02-01
description Based on Arimoto&#8217;s work in 1972, we propose an iterative algorithm for computing the capacity of a discrete memoryless classical-quantum channel with a finite input alphabet and a finite dimensional output, which we call the Blahut&#8722;Arimoto algorithm for classical-quantum channel, and an input cost constraint is considered. We show that, to reach <inline-formula> <math display="inline"> <semantics> <mi>&#949;</mi> </semantics> </math> </inline-formula> accuracy, the iteration complexity of the algorithm is upper bounded by <inline-formula> <math display="inline"> <semantics> <mfrac> <mrow> <mo form="prefix">log</mo> <mi>n</mi> <mo form="prefix">log</mo> <mi>&#949;</mi> </mrow> <mi>&#949;</mi> </mfrac> </semantics> </math> </inline-formula> where <i>n</i> is the size of the input alphabet. In particular, when the output state <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo>{</mo> <msub> <mi>&#961;</mi> <mi>x</mi> </msub> <mo>}</mo> </mrow> <mrow> <mi>x</mi> <mo>&#8712;</mo> <mi mathvariant="script">X</mi> </mrow> </msub> </semantics> </math> </inline-formula> is linearly independent in complex matrix space, the algorithm has a geometric convergence. We also show that the algorithm reaches an <inline-formula> <math display="inline"> <semantics> <mi>&#949;</mi> </semantics> </math> </inline-formula> accurate solution with a complexity of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <mfrac> <mrow> <msup> <mi>m</mi> <mn>3</mn> </msup> <mo form="prefix">log</mo> <mi>n</mi> <mo form="prefix">log</mo> <mi>&#949;</mi> </mrow> <mi>&#949;</mi> </mfrac> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <msup> <mi>m</mi> <mn>3</mn> </msup> <mo form="prefix">log</mo> <mi>&#949;</mi> <msub> <mo form="prefix">log</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>&#8722;</mo> <mi>&#948;</mi> <mo>)</mo> </mrow> </msub> <mfrac> <mi>&#949;</mi> <mrow> <mi>D</mi> <mo>(</mo> <msup> <mi>p</mi> <mo>*</mo> </msup> <mo>|</mo> <mo>|</mo> <msup> <mi>p</mi> <msub> <mi>N</mi> <mn>0</mn> </msub> </msup> <mo>)</mo> </mrow> </mfrac> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> in the special case, where <i>m</i> is the output dimension, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>(</mo> <msup> <mi>p</mi> <mo>*</mo> </msup> <mo>|</mo> <mo>|</mo> <msup> <mi>p</mi> <msub> <mi>N</mi> <mn>0</mn> </msub> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is the relative entropy of two distributions, and <inline-formula> <math display="inline"> <semantics> <mi>&#948;</mi> </semantics> </math> </inline-formula> is a positive number. Numerical experiments were performed and an approximate solution for the binary two-dimensional case was analysed.
topic capacity
classical-quantum channel
blahut–arimoto type algorithm
convergence speed
url https://www.mdpi.com/1099-4300/22/2/222
work_keys_str_mv AT haoboli computingclassicalquantumchannelcapacityusingblahutarimototypealgorithmatheoreticalandnumericalanalysis
AT ningcai computingclassicalquantumchannelcapacityusingblahutarimototypealgorithmatheoreticalandnumericalanalysis
_version_ 1725024892587343872