Computation of radial solutions of semilinear equations
We express radial solutions of semilinear elliptic equations on $R^n$ as convergent power series in $r$, and then use Pade approximants to compute both ground state solutions, and solutions to Dirichlet problem. Using a similar approach we have discovered existence of singular solutions for a class...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2007-07-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=272 |
Summary: | We express radial solutions of semilinear elliptic equations on $R^n$ as convergent power series in $r$, and then use Pade approximants to compute both ground state solutions, and solutions to Dirichlet problem. Using a similar approach we have discovered existence of singular solutions for a class of subcritical problems. We prove convergence of the power series by modifying the classical method of majorants. |
---|---|
ISSN: | 1417-3875 1417-3875 |