Computation of radial solutions of semilinear equations

We express radial solutions of semilinear elliptic equations on $R^n$ as convergent power series in $r$, and then use Pade approximants to compute both ground state solutions, and solutions to Dirichlet problem. Using a similar approach we have discovered existence of singular solutions for a class...

Full description

Bibliographic Details
Main Author: Philip Korman
Format: Article
Language:English
Published: University of Szeged 2007-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=272
Description
Summary:We express radial solutions of semilinear elliptic equations on $R^n$ as convergent power series in $r$, and then use Pade approximants to compute both ground state solutions, and solutions to Dirichlet problem. Using a similar approach we have discovered existence of singular solutions for a class of subcritical problems. We prove convergence of the power series by modifying the classical method of majorants.
ISSN:1417-3875
1417-3875