Effects of Prenatal Exposure to a Low-Dose of Bisphenol A on Sex Differences in Emotional Behavior and Central Alpha<sub>2</sub>-Adrenergic Receptor Binding

Prenatal exposure to bisphenol A (BPA) influences the development of sex differences neurologically and behaviorally across many species of vertebrates. These effects are a consequence of BPA’s estrogenic activity and its ability to act as an endocrine disrupter even, at very low doses. When exposur...

Full description

Bibliographic Details
Main Authors: Davide Ponzi, Laura Gioiosa, Stefano Parmigiani, Paola Palanza
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/9/3269
Description
Summary:Prenatal exposure to bisphenol A (BPA) influences the development of sex differences neurologically and behaviorally across many species of vertebrates. These effects are a consequence of BPA’s estrogenic activity and its ability to act as an endocrine disrupter even, at very low doses. When exposure to BPA occurs during critical periods of development, it can interfere with the normal activity of sex steroids, impacting the fate of neurons, neural connectivity and the development of brain regions sensitive to steroid activity. Among the most sensitive behavioral targets of BPA action are behaviors that are characterized by a sexual dimorphism, especially emotion and anxiety related behaviors, such as the amount of time spent investigating a novel environment, locomotive activity and arousal. Moreover, in some species of rodents, BPA exposure affected males’ sexual behaviors. Interestingly, these behaviors are at least in part modulated by the catecholaminergic system, which has been reported to be a target of BPA action. In the present study we investigated the influence of prenatal exposure of mice to a very low single dose of BPA on emotional and sexual behaviors and on the density and binding characteristics of alpha<sub>2</sub> adrenergic receptors. Alpha<sub>2</sub> adrenergic receptors are widespread in the central nervous system and they can act as autoreceptors, inhibiting the release of noradrenaline and other neurotransmitters from presynaptic terminals. BPA exposure disrupted sex differences in behavioral responses to a novel environment, but did not affect male mice sexual behavior. Importantly, BPA exposure caused a change in the binding affinity of alpha<sub>2</sub> adrenergic receptors in the locus coeruleus and medial preoptic area (mPOA) and it eliminated the sexual dimorphism in the density of the receptors in the mPOA.
ISSN:1661-6596
1422-0067