A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$

Abstract This article is concerned with the following class of nonlinear Choquard equations: {−Δu+a(x)u=(|x|−μ∗|u|2μ∗)|u|2μ∗−2u+q(x)|u|p−1u,x∈RN,u∈H1(RN), $$\begin{aligned} \textstyle\begin{cases} -\Delta u+a(x)u= ( \vert x \vert ^{-\mu }* \vert u \vert ^{2^{*}_{\mu }} ) \vert u \vert ^{2^{*} _{\mu...

Full description

Bibliographic Details
Main Authors: Wangcheng Huang, Wei Long, Aliang Xia, Xiongjun Zheng
Format: Article
Language:English
Published: SpringerOpen 2019-06-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1223-z
id doaj-f26951449dbf4ce2b86944df4962a980
record_format Article
spelling doaj-f26951449dbf4ce2b86944df4962a9802020-11-25T03:52:56ZengSpringerOpenBoundary Value Problems1687-27702019-06-012019111610.1186/s13661-019-1223-zA global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$Wangcheng Huang0Wei Long1Aliang Xia2Xiongjun Zheng3Department of Mathematics, Jiangxi Normal UniversityDepartment of Mathematics, Jiangxi Normal UniversityDepartment of Mathematics, Jiangxi Normal UniversityDepartment of Mathematics, Jiangxi Normal UniversityAbstract This article is concerned with the following class of nonlinear Choquard equations: {−Δu+a(x)u=(|x|−μ∗|u|2μ∗)|u|2μ∗−2u+q(x)|u|p−1u,x∈RN,u∈H1(RN), $$\begin{aligned} \textstyle\begin{cases} -\Delta u+a(x)u= ( \vert x \vert ^{-\mu }* \vert u \vert ^{2^{*}_{\mu }} ) \vert u \vert ^{2^{*} _{\mu }-2}u+q(x) \vert u \vert ^{p-1}u, \quad x\in \mathbb{R} ^{N}, \\ u\in H^{1}(\mathbb{R} ^{N}), \end{cases}\displaystyle \end{aligned}$$ where 2μ∗=2N−μN−2 $2^{*}_{\mu }=\frac{2N-\mu }{N-2}$ is the critical exponent with N≥4 $N\ge 4$ and 0<μ<N $0<\mu <N$, 1<p<2∗−1=N+2N−2 $1< p<2^{*}-1=\frac{N+2}{N-2}$, a(x) $a(x)$ and q(x) $q(x)$ satisfy some assumptions. Through a compactness analysis of the functional corresponding to the above problem, we obtain the existence of weak solutions for this problem under certain assumptions on a(x) $a(x)$ and q(x) $q(x)$.http://link.springer.com/article/10.1186/s13661-019-1223-zGlobal compactness(PS) conditionChoquard equationExistence results
collection DOAJ
language English
format Article
sources DOAJ
author Wangcheng Huang
Wei Long
Aliang Xia
Xiongjun Zheng
spellingShingle Wangcheng Huang
Wei Long
Aliang Xia
Xiongjun Zheng
A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$
Boundary Value Problems
Global compactness
(PS) condition
Choquard equation
Existence results
author_facet Wangcheng Huang
Wei Long
Aliang Xia
Xiongjun Zheng
author_sort Wangcheng Huang
title A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$
title_short A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$
title_full A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$
title_fullStr A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$
title_full_unstemmed A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$
title_sort global compactness result for a critical nonlinear choquard equation in rn $\mathbb{r} ^{n}$
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2019-06-01
description Abstract This article is concerned with the following class of nonlinear Choquard equations: {−Δu+a(x)u=(|x|−μ∗|u|2μ∗)|u|2μ∗−2u+q(x)|u|p−1u,x∈RN,u∈H1(RN), $$\begin{aligned} \textstyle\begin{cases} -\Delta u+a(x)u= ( \vert x \vert ^{-\mu }* \vert u \vert ^{2^{*}_{\mu }} ) \vert u \vert ^{2^{*} _{\mu }-2}u+q(x) \vert u \vert ^{p-1}u, \quad x\in \mathbb{R} ^{N}, \\ u\in H^{1}(\mathbb{R} ^{N}), \end{cases}\displaystyle \end{aligned}$$ where 2μ∗=2N−μN−2 $2^{*}_{\mu }=\frac{2N-\mu }{N-2}$ is the critical exponent with N≥4 $N\ge 4$ and 0<μ<N $0<\mu <N$, 1<p<2∗−1=N+2N−2 $1< p<2^{*}-1=\frac{N+2}{N-2}$, a(x) $a(x)$ and q(x) $q(x)$ satisfy some assumptions. Through a compactness analysis of the functional corresponding to the above problem, we obtain the existence of weak solutions for this problem under certain assumptions on a(x) $a(x)$ and q(x) $q(x)$.
topic Global compactness
(PS) condition
Choquard equation
Existence results
url http://link.springer.com/article/10.1186/s13661-019-1223-z
work_keys_str_mv AT wangchenghuang aglobalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn
AT weilong aglobalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn
AT aliangxia aglobalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn
AT xiongjunzheng aglobalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn
AT wangchenghuang globalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn
AT weilong globalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn
AT aliangxia globalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn
AT xiongjunzheng globalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn
_version_ 1724480126610046976