A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$
Abstract This article is concerned with the following class of nonlinear Choquard equations: {−Δu+a(x)u=(|x|−μ∗|u|2μ∗)|u|2μ∗−2u+q(x)|u|p−1u,x∈RN,u∈H1(RN), $$\begin{aligned} \textstyle\begin{cases} -\Delta u+a(x)u= ( \vert x \vert ^{-\mu }* \vert u \vert ^{2^{*}_{\mu }} ) \vert u \vert ^{2^{*} _{\mu...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-06-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-019-1223-z |
id |
doaj-f26951449dbf4ce2b86944df4962a980 |
---|---|
record_format |
Article |
spelling |
doaj-f26951449dbf4ce2b86944df4962a9802020-11-25T03:52:56ZengSpringerOpenBoundary Value Problems1687-27702019-06-012019111610.1186/s13661-019-1223-zA global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$Wangcheng Huang0Wei Long1Aliang Xia2Xiongjun Zheng3Department of Mathematics, Jiangxi Normal UniversityDepartment of Mathematics, Jiangxi Normal UniversityDepartment of Mathematics, Jiangxi Normal UniversityDepartment of Mathematics, Jiangxi Normal UniversityAbstract This article is concerned with the following class of nonlinear Choquard equations: {−Δu+a(x)u=(|x|−μ∗|u|2μ∗)|u|2μ∗−2u+q(x)|u|p−1u,x∈RN,u∈H1(RN), $$\begin{aligned} \textstyle\begin{cases} -\Delta u+a(x)u= ( \vert x \vert ^{-\mu }* \vert u \vert ^{2^{*}_{\mu }} ) \vert u \vert ^{2^{*} _{\mu }-2}u+q(x) \vert u \vert ^{p-1}u, \quad x\in \mathbb{R} ^{N}, \\ u\in H^{1}(\mathbb{R} ^{N}), \end{cases}\displaystyle \end{aligned}$$ where 2μ∗=2N−μN−2 $2^{*}_{\mu }=\frac{2N-\mu }{N-2}$ is the critical exponent with N≥4 $N\ge 4$ and 0<μ<N $0<\mu <N$, 1<p<2∗−1=N+2N−2 $1< p<2^{*}-1=\frac{N+2}{N-2}$, a(x) $a(x)$ and q(x) $q(x)$ satisfy some assumptions. Through a compactness analysis of the functional corresponding to the above problem, we obtain the existence of weak solutions for this problem under certain assumptions on a(x) $a(x)$ and q(x) $q(x)$.http://link.springer.com/article/10.1186/s13661-019-1223-zGlobal compactness(PS) conditionChoquard equationExistence results |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wangcheng Huang Wei Long Aliang Xia Xiongjun Zheng |
spellingShingle |
Wangcheng Huang Wei Long Aliang Xia Xiongjun Zheng A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$ Boundary Value Problems Global compactness (PS) condition Choquard equation Existence results |
author_facet |
Wangcheng Huang Wei Long Aliang Xia Xiongjun Zheng |
author_sort |
Wangcheng Huang |
title |
A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$ |
title_short |
A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$ |
title_full |
A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$ |
title_fullStr |
A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$ |
title_full_unstemmed |
A global compactness result for a critical nonlinear Choquard equation in RN $\mathbb{R} ^{N}$ |
title_sort |
global compactness result for a critical nonlinear choquard equation in rn $\mathbb{r} ^{n}$ |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2019-06-01 |
description |
Abstract This article is concerned with the following class of nonlinear Choquard equations: {−Δu+a(x)u=(|x|−μ∗|u|2μ∗)|u|2μ∗−2u+q(x)|u|p−1u,x∈RN,u∈H1(RN), $$\begin{aligned} \textstyle\begin{cases} -\Delta u+a(x)u= ( \vert x \vert ^{-\mu }* \vert u \vert ^{2^{*}_{\mu }} ) \vert u \vert ^{2^{*} _{\mu }-2}u+q(x) \vert u \vert ^{p-1}u, \quad x\in \mathbb{R} ^{N}, \\ u\in H^{1}(\mathbb{R} ^{N}), \end{cases}\displaystyle \end{aligned}$$ where 2μ∗=2N−μN−2 $2^{*}_{\mu }=\frac{2N-\mu }{N-2}$ is the critical exponent with N≥4 $N\ge 4$ and 0<μ<N $0<\mu <N$, 1<p<2∗−1=N+2N−2 $1< p<2^{*}-1=\frac{N+2}{N-2}$, a(x) $a(x)$ and q(x) $q(x)$ satisfy some assumptions. Through a compactness analysis of the functional corresponding to the above problem, we obtain the existence of weak solutions for this problem under certain assumptions on a(x) $a(x)$ and q(x) $q(x)$. |
topic |
Global compactness (PS) condition Choquard equation Existence results |
url |
http://link.springer.com/article/10.1186/s13661-019-1223-z |
work_keys_str_mv |
AT wangchenghuang aglobalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn AT weilong aglobalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn AT aliangxia aglobalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn AT xiongjunzheng aglobalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn AT wangchenghuang globalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn AT weilong globalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn AT aliangxia globalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn AT xiongjunzheng globalcompactnessresultforacriticalnonlinearchoquardequationinrnmathbbrn |
_version_ |
1724480126610046976 |