Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development
The recent outbreak of the novel coronavirus disease, COVID-19, has highlighted the threat that highly pathogenic coronaviruses have on global health security and the imminent need to design an effective vaccine for prevention purposes. Although several attempts have been made to develop vaccines ag...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Journal of Immunology Research |
Online Access: | http://dx.doi.org/10.1155/2020/7201752 |
id |
doaj-f268e58e5a694e9da97e073c0483ee52 |
---|---|
record_format |
Article |
spelling |
doaj-f268e58e5a694e9da97e073c0483ee522020-11-25T03:28:54ZengHindawi LimitedJournal of Immunology Research2314-88612314-71562020-01-01202010.1155/2020/72017527201752Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine DevelopmentAtin Khalaj-Hedayati0School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, MalaysiaThe recent outbreak of the novel coronavirus disease, COVID-19, has highlighted the threat that highly pathogenic coronaviruses have on global health security and the imminent need to design an effective vaccine for prevention purposes. Although several attempts have been made to develop vaccines against human coronavirus infections since the emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2003, there is no available licensed vaccine yet. A better understanding of previous coronavirus vaccine studies may help to design a vaccine for the newly emerged virus, SARS-CoV-2, that may also cover other pathogenic coronaviruses as a potentially universal vaccine. In general, coronavirus spike protein is the major antigen for the vaccine design as it can induce neutralizing antibodies and protective immunity. By considering the high genetic similarity between SARS-CoV and SARS-CoV-2, here, protective immunity against SARS-CoV spike subunit vaccine candidates in animal models has been reviewed to gain advances that can facilitate coronavirus vaccine development in the near future.http://dx.doi.org/10.1155/2020/7201752 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Atin Khalaj-Hedayati |
spellingShingle |
Atin Khalaj-Hedayati Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development Journal of Immunology Research |
author_facet |
Atin Khalaj-Hedayati |
author_sort |
Atin Khalaj-Hedayati |
title |
Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development |
title_short |
Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development |
title_full |
Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development |
title_fullStr |
Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development |
title_full_unstemmed |
Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development |
title_sort |
protective immunity against sars subunit vaccine candidates based on spike protein: lessons for coronavirus vaccine development |
publisher |
Hindawi Limited |
series |
Journal of Immunology Research |
issn |
2314-8861 2314-7156 |
publishDate |
2020-01-01 |
description |
The recent outbreak of the novel coronavirus disease, COVID-19, has highlighted the threat that highly pathogenic coronaviruses have on global health security and the imminent need to design an effective vaccine for prevention purposes. Although several attempts have been made to develop vaccines against human coronavirus infections since the emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2003, there is no available licensed vaccine yet. A better understanding of previous coronavirus vaccine studies may help to design a vaccine for the newly emerged virus, SARS-CoV-2, that may also cover other pathogenic coronaviruses as a potentially universal vaccine. In general, coronavirus spike protein is the major antigen for the vaccine design as it can induce neutralizing antibodies and protective immunity. By considering the high genetic similarity between SARS-CoV and SARS-CoV-2, here, protective immunity against SARS-CoV spike subunit vaccine candidates in animal models has been reviewed to gain advances that can facilitate coronavirus vaccine development in the near future. |
url |
http://dx.doi.org/10.1155/2020/7201752 |
work_keys_str_mv |
AT atinkhalajhedayati protectiveimmunityagainstsarssubunitvaccinecandidatesbasedonspikeproteinlessonsforcoronavirusvaccinedevelopment |
_version_ |
1715202823519469568 |