Identification of Antioxidants from Sequence Information Using Naïve Bayes

Antioxidant proteins are substances that protect cells from the damage caused by free radicals. Accurate identification of new antioxidant proteins is important in understanding their roles in delaying aging. Therefore, it is highly desirable to develop computational methods to identify antioxidant...

Full description

Bibliographic Details
Main Authors: Peng-Mian Feng, Hao Lin, Wei Chen
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Computational and Mathematical Methods in Medicine
Online Access:http://dx.doi.org/10.1155/2013/567529
Description
Summary:Antioxidant proteins are substances that protect cells from the damage caused by free radicals. Accurate identification of new antioxidant proteins is important in understanding their roles in delaying aging. Therefore, it is highly desirable to develop computational methods to identify antioxidant proteins. In this study, a Naïve Bayes-based method was proposed to predict antioxidant proteins using amino acid compositions and dipeptide compositions. In order to remove redundant information, a novel feature selection technique was employed to single out optimized features. In the jackknife test, the proposed method achieved an accuracy of 66.88% for the discrimination between antioxidant and nonantioxidant proteins, which is superior to that of other state-of-the-art classifiers. These results suggest that the proposed method could be an effective and promising high-throughput method for antioxidant protein identification.
ISSN:1748-670X
1748-6718