Monitoring Vegetation Change in the Dryland Ecosystem of Sokoto, Northwestern Nigeria using Geoinformatics
The dryland ecosystem of Sokoto state, in the North-western part of Nigeria has been witnessing gradual loss of vegetation cover in the recent decades caused by natural and human induced drivers of ecosystem change. This negative trend poses great challenges to both the physical environment and the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Gadjah Mada
2019-05-01
|
Series: | Indonesian Journal of Geography |
Subjects: | |
Online Access: | https://jurnal.ugm.ac.id/ijg/article/view/33207 |
Summary: | The dryland ecosystem of Sokoto state, in the North-western part of Nigeria has been witnessing gradual loss of vegetation cover in the recent decades caused by natural and human induced drivers of ecosystem change. This negative trend poses great challenges to both the physical environment and the people of the area, particularly due to the fragile nature of the ecosystems in the region and the peoples’ over dependence on it for their livelihoods. This study tries to monitor and assess the rate of change in the spatial distribution of vegetation in the area over the time and identify the drivers responsible for changing the vegetation. This is with a view to providing evidence-based information to the policy makers that would guide them in making informed decisions that would assist in conserving the vegetation and the entire ecosystem of the area. Using multi-temporal MODIS-NDVI satellite data, image processing and GIS techniques, this research work tries to monitor and assess gradual change in vegetation cover in Sokoto state, North-western Nigeria. Correlation analysis was also used to measure the degree of relationship between vegetation change and some drivers of ecosystem change in the area. The findings of the research reveal a gradual but persistent decline in vegetation cover in the area, both during the rainy and dry seasons. This is also show a strong positive relationship with the rainfall distribution and a perfect negative relationship with the population distribution of the area. This indicate that, both climate change and anthropogenic drivers plays a significant role in changing vegetation distribution of the area. Anthropogenic drivers however, play a more significant influence. The degree of relationship is however, stronger during the dry season, making the ecosystem more vulnerable during the dry season due to increasing aridity. Although change in the vegetation cover of the area seems to be gradual and unnoticed, if left unchecked the long-term cumulative impacts could have serious negative impacts on both the structure and functions of the ecosystems of the area. This could in turn, affect the livelihoods and socio-economic development of the area. |
---|---|
ISSN: | 0024-9521 2354-9114 |