Characterization of carbonaceous aerosols in Singapore: insight from black carbon fragments and trace metal ions detected by a soot particle aerosol mass spectrometer

<p>Understanding sources and atmospheric processes that can influence the physiochemical properties of carbonaceous aerosols is essential to evaluate their impacts on air quality and climate. However, resolving the sources, emission characteristics, and aging processes of carbonaceous aerosols...

Full description

Bibliographic Details
Main Authors: L.-H. Rivellini, M. G. Adam, N. Kasthuriarachchi, A. K. Y. Lee
Format: Article
Language:English
Published: Copernicus Publications 2020-05-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/20/5977/2020/acp-20-5977-2020.pdf
Description
Summary:<p>Understanding sources and atmospheric processes that can influence the physiochemical properties of carbonaceous aerosols is essential to evaluate their impacts on air quality and climate. However, resolving the sources, emission characteristics, and aging processes of carbonaceous aerosols in complex urban environments remains challenging. In this work, a soot particle aerosol mass spectrometer (SP-AMS) was deployed to characterize organic aerosols (OAs), refractory black carbon (rBC), and trace metals in Singapore, a highly urbanized city with multiple local and regional air pollution sources in the tropical region. rBC (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">C</mi><mn mathvariant="normal">1</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="16pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="472eb161d64b68a231d325ff11f4c3a5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-5977-2020-ie00001.svg" width="16pt" height="15pt" src="acp-20-5977-2020-ie00001.png"/></svg:svg></span></span>–<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">C</mi><mn mathvariant="normal">9</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="16pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8af7b9817e69df4fd53090a915849774"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-5977-2020-ie00002.svg" width="16pt" height="15pt" src="acp-20-5977-2020-ie00002.png"/></svg:svg></span></span>) fragments and trace metal ions (<span class="inline-formula">K<sup>+</sup></span>, <span class="inline-formula">Na<sup>+</sup></span>, <span class="inline-formula">Ni<sup>+</sup></span>, <span class="inline-formula">V<sup>+</sup></span>, and <span class="inline-formula">Rb<sup>+</sup></span>) were integrated into our positive matrix factorization of OA. Two types of fossil fuel combustion-related OAs with different degrees of oxygenation were identified. This work provides evidence that over 90&thinsp;% of rBC originated from local combustion sources with a major part related to traffic and <span class="inline-formula">∼30</span>&thinsp;% associated with fresh secondary organic aerosol (SOA) produced under the influence of shipping and industrial emission activities (e.g., refineries and petrochemical plants) during daytime. The results also show that <span class="inline-formula">∼43</span>&thinsp;% of the total rBC was emitted from local traffic, while the rest of the rBC fraction stemmed from multiple sources including vehicular sources, shipping, and industrial emissions, but was not fully resolved. There was only a weak association of the cooking-related OA component with rBC. Although there was no observable biomass burning episode during the sampling period, <span class="inline-formula">K<sup>+</sup></span> and <span class="inline-formula">Rb<sup>+</sup></span> were mainly associated with the more oxidized oxygenated OA component, indicating the potential contribution of regional biomass burning and/or coal combustion emissions to this aged OA component. Furthermore, the aerosol pollutants transported from the industrial area and shipping ports presented higher <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">C</mi><mn mathvariant="normal">1</mn><mo>+</mo></msubsup><mo>/</mo><msubsup><mi mathvariant="normal">C</mi><mn mathvariant="normal">3</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="36pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="aeff7c7aa7fbabf3ed61ae9da0262ad8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-5977-2020-ie00003.svg" width="36pt" height="15pt" src="acp-20-5977-2020-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="normal">V</mi><mo>+</mo></msup><mo>/</mo><msup><mi mathvariant="normal">Ni</mi><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="03c39fb5ab0d7aa899626939f16010da"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-5977-2020-ie00004.svg" width="38pt" height="14pt" src="acp-20-5977-2020-ie00004.png"/></svg:svg></span></span> ratios than those associated with traffic. The observed association between <span class="inline-formula">Na<sup>+</sup></span> and rBC suggests that the contribution of anthropogenic emissions to total particulate sodium should not be ignored in coastal urban environments. Overall, this work demonstrates that rBC fragments and trace metal ions can improve our understanding of the sources, emission characteristics, and aging history of carbonaceous aerosol (OA and rBC) in this type of complex urban environment.</p>
ISSN:1680-7316
1680-7324