Artificial Potential Field with Discrete Map Transformation for Feasible Indoor Path Planning
This work considers the path planning problem of personal mobility vehicle (PMV) for indoor navigation using the Artificial Potential Field (APF) method. The APF method sometimes suffers from an infinite loop problem during the planning phase when the goal is blocked by obstacles with certain charac...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-12-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/24/8987 |
Summary: | This work considers the path planning problem of personal mobility vehicle (PMV) for indoor navigation using the Artificial Potential Field (APF) method. The APF method sometimes suffers from an infinite loop problem during the planning phase when the goal is blocked by obstacles with certain characteristics. To address the issue, this study deploys the map augmentation method for replanning. When infinite loop situations occur, the map is transformed and the search for drivable path is initiated. The method successfully generates a feasible trajectory when the map is rotated at a certain angle. The scenario of successful planning is shown in the result. |
---|---|
ISSN: | 2076-3417 |