The finite element method in the analysis of the stress and strain distribution in polyethylene elements of hip and knee joints endoprostheses
The paper presents the numerical analysis of stress and strain occurring in the most wearable parts of hip and knee joints endoprostheses. The complexity of the processes taking place in both, natural and artificial joints, makes it necessary to conduct the analysis on the 3D model based on already...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2019-01-01
|
Series: | MATEC Web of Conferences |
Subjects: | |
Online Access: | https://doi.org/10.1051/matecconf/201925402025 |
id |
doaj-f1ea54ce9bf34fe8b83461799c1e1dfd |
---|---|
record_format |
Article |
spelling |
doaj-f1ea54ce9bf34fe8b83461799c1e1dfd2021-02-02T06:18:03ZengEDP SciencesMATEC Web of Conferences2261-236X2019-01-012540202510.1051/matecconf/201925402025matecconf_mms18_02025The finite element method in the analysis of the stress and strain distribution in polyethylene elements of hip and knee joints endoprosthesesNabrdalik Marcin0Sobociński Michał1Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer ScienceCzęstochowa University of Technology, Faculty of Mechanical Engineering and Computer ScienceThe paper presents the numerical analysis of stress and strain occurring in the most wearable parts of hip and knee joints endoprostheses. The complexity of the processes taking place in both, natural and artificial joints, makes it necessary to conduct the analysis on the 3D model based on already existing mathematical models. Most of the mechanical failures in alloplasty are caused by material fatigue. To cut down the risk of it, we can either increase the fatigue resistance of the material or decrease the load strain. It is extremelly important to indicate the areas where damage or premature wear may occur. The Finite Elements Method makes it possible to calculate the stress and strain in particular elements of the tested models. All presented numerical calculations define quality conclusions concerning the influence of some parameters of endoprostheses on the values of stress and strain that are formed in polyethylene parts of endoprotheses of hip and knee joints. The obtained results help to reveal “weak points” in examined models and thus, counteract the subsequent effects resulting from premature wear of endoprosthesis elements. The numerical analysis was performed basing on the finite elements method using Autodesk Simulation Mechanical 2017 software and the ADINA 7.5.1.https://doi.org/10.1051/matecconf/201925402025FEMendoprosthesisstressstrain |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nabrdalik Marcin Sobociński Michał |
spellingShingle |
Nabrdalik Marcin Sobociński Michał The finite element method in the analysis of the stress and strain distribution in polyethylene elements of hip and knee joints endoprostheses MATEC Web of Conferences FEM endoprosthesis stress strain |
author_facet |
Nabrdalik Marcin Sobociński Michał |
author_sort |
Nabrdalik Marcin |
title |
The finite element method in the analysis of the stress and strain distribution in polyethylene elements of hip and knee joints endoprostheses |
title_short |
The finite element method in the analysis of the stress and strain distribution in polyethylene elements of hip and knee joints endoprostheses |
title_full |
The finite element method in the analysis of the stress and strain distribution in polyethylene elements of hip and knee joints endoprostheses |
title_fullStr |
The finite element method in the analysis of the stress and strain distribution in polyethylene elements of hip and knee joints endoprostheses |
title_full_unstemmed |
The finite element method in the analysis of the stress and strain distribution in polyethylene elements of hip and knee joints endoprostheses |
title_sort |
finite element method in the analysis of the stress and strain distribution in polyethylene elements of hip and knee joints endoprostheses |
publisher |
EDP Sciences |
series |
MATEC Web of Conferences |
issn |
2261-236X |
publishDate |
2019-01-01 |
description |
The paper presents the numerical analysis of stress and strain occurring in the most wearable parts of hip and knee joints endoprostheses. The complexity of the processes taking place in both, natural and artificial joints, makes it necessary to conduct the analysis on the 3D model based on already existing mathematical models. Most of the mechanical failures in alloplasty are caused by material fatigue. To cut down the risk of it, we can either increase the fatigue resistance of the material or decrease the load strain. It is extremelly important to indicate the areas where damage or premature wear may occur. The Finite Elements Method makes it possible to calculate the stress and strain in particular elements of the tested models. All presented numerical calculations define quality conclusions concerning the influence of some parameters of endoprostheses on the values of stress and strain that are formed in polyethylene parts of endoprotheses of hip and knee joints. The obtained results help to reveal “weak points” in examined models and thus, counteract the subsequent effects resulting from premature wear of endoprosthesis elements. The numerical analysis was performed basing on the finite elements method using Autodesk Simulation Mechanical 2017 software and the ADINA 7.5.1. |
topic |
FEM endoprosthesis stress strain |
url |
https://doi.org/10.1051/matecconf/201925402025 |
work_keys_str_mv |
AT nabrdalikmarcin thefiniteelementmethodintheanalysisofthestressandstraindistributioninpolyethyleneelementsofhipandkneejointsendoprostheses AT sobocinskimichał thefiniteelementmethodintheanalysisofthestressandstraindistributioninpolyethyleneelementsofhipandkneejointsendoprostheses AT nabrdalikmarcin finiteelementmethodintheanalysisofthestressandstraindistributioninpolyethyleneelementsofhipandkneejointsendoprostheses AT sobocinskimichał finiteelementmethodintheanalysisofthestressandstraindistributioninpolyethyleneelementsofhipandkneejointsendoprostheses |
_version_ |
1724301686788325376 |