Summary: | Organic dye molecules have been used in a great number of scientific and technological applications, but their wider use in quantum optics has been hampered by transitions to short-lived vibrational levels, which limit their coherence properties. To remedy this, one can take advantage of optical resonators. Here, we present the first results on coherent molecule-resonator coupling, where a single polycyclic aromatic hydrocarbon molecule extinguishes 38% of the light entering a microcavity at liquid helium temperature. We also demonstrate fourfold improvement of single-molecule stimulated emission compared to free-space focusing and take first steps for coherent mechanical manipulation of the molecular transition. Our approach of coupling molecules to an open and tunable microcavity with a very low mode volume and moderately low quality factors of the order of 10^{3} paves the way for the realization of nonlinear and collective quantum optical effects.
|