Enhanced Supercapacitance of Hydrous Ruthenium Oxide/Mesocarbon Microbeads Composites toward Electrochemical Capacitors

A facile hydrothermal strategy was proposed to synthesize RuO2⋅nH2O/mesocarbon microbeads (MCMBs) composites. Further physical characterizations revealed that RuO2⋅nH2O nanoparticles (NPs) were well dispersed upon the surfaces of the MCMB pretreated in 6 M KOH solution. Electrochemical data indicate...

Full description

Bibliographic Details
Main Authors: Changzhou Yuan, Linrui Hou, Diankai Li, Long Yang, Jiaoyang Li
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Electrochemistry
Online Access:http://dx.doi.org/10.1155/2012/714092
Description
Summary:A facile hydrothermal strategy was proposed to synthesize RuO2⋅nH2O/mesocarbon microbeads (MCMBs) composites. Further physical characterizations revealed that RuO2⋅nH2O nanoparticles (NPs) were well dispersed upon the surfaces of the MCMB pretreated in 6 M KOH solution. Electrochemical data indicated that the RuO2⋅nH2O/MCMB composites owned higher electrochemical utilization of RuO2 species, better power property, and better electrochemical stability, compared with the single RuO2 phase. The good dispersion of RuO2⋅nH2O NPs and enhanced electronic conductivity made the H+ ions and electrons easily contact the RuO2⋅nH2O phase for efficient energy storage at high rates.
ISSN:2090-3529
2090-3537