In Support of Winge's Theory of “Hybridization Followed by Chromosome Doubling”
Polyploidy—or chromosome doubling—plays a significant role in plant speciation and evolution. Much of the existing evidence indicates that fusion of unreduced (or 2n) gametes is the major pathway responsible for polyploid formation. In the early 1900s, a theory was put forward that the mechanism of...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-06-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fpls.2020.00954/full |
id |
doaj-f1d5069971b149c4a4070d22c403389b |
---|---|
record_format |
Article |
spelling |
doaj-f1d5069971b149c4a4070d22c403389b2020-11-25T03:14:19ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2020-06-011110.3389/fpls.2020.00954524715In Support of Winge's Theory of “Hybridization Followed by Chromosome Doubling”Noemi Tel-Zur0Joseph Mouyal1Udi Zurgil2Yosef Mizrahi3The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, IsraelDepartment of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, IsraelThe French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, IsraelDepartment of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, IsraelPolyploidy—or chromosome doubling—plays a significant role in plant speciation and evolution. Much of the existing evidence indicates that fusion of unreduced (or 2n) gametes is the major pathway responsible for polyploid formation. In the early 1900s, a theory was put forward that the mechanism of “hybridization followed by chromosome doubling” would enable the survival and development of the hybrid zygote by providing each chromosome with a homolog with which to pair. However, to date there is only scant empirical evidence supporting this theory. In our previous study, interspecific-interploid crosses between the tetraploid Hylocereus megalanthus, as the female parent, and the diploid H. undatus, as the male parent, yielded only allopentaploids, allohexaploids, and 5x-and 6x-aneuploids instead of the expected allotriploids. No viable hybrids were obtained from the reciprocal cross. Since H. undatus underwent normal meiosis with regular pairing in the pollen mother cells and only reduced pollen grains were observed, the allohexaploids obtained supported the concept of “chromosome doubling.” In this work, we report ploidy level, fruit morphology, and pollen viability and diameter in a group of putative hybrids obtained from an embryo rescue procedure following controlled H. megalanthus × H. undatus crosses, with the aim to elucidate, for the first time, the timing and developmental stage of the chromosome doubling. As in our previous report, no triploids were obtained, but tetraploids, pentaploids, hexaploids, and 5x- and 6x-aneuploids were found in the regenerated plants. The tetraploids exhibited the morphological features of the maternal parent and could not be considered true hybrids. Based on our previous studies, we can assume that the pentaploids were a result of a fertilization event between one unreduced (2n) female gamete from the tetraploid H. megalanthus and a normal (n) haploid male gamete from H. undatus. All the allohexaploids obtained from the embryo rescue technique where those that regenerated from fertilized ovules 10 days after pollination (at the pro-embryo stage), showing that the chromosome doubling event occurred at a very early development stage, i.e., at the zygote stage or shortly after zygote formation. These allohexaploids thus constitute empirical evidence of “hybridization followed by chromosome doubling.”https://www.frontiersin.org/article/10.3389/fpls.2020.00954/fullallopolyploidizationflow cytometrygenome duplicationHylocereusinterspecific-interploid crossestrue hybrids |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Noemi Tel-Zur Joseph Mouyal Udi Zurgil Yosef Mizrahi |
spellingShingle |
Noemi Tel-Zur Joseph Mouyal Udi Zurgil Yosef Mizrahi In Support of Winge's Theory of “Hybridization Followed by Chromosome Doubling” Frontiers in Plant Science allopolyploidization flow cytometry genome duplication Hylocereus interspecific-interploid crosses true hybrids |
author_facet |
Noemi Tel-Zur Joseph Mouyal Udi Zurgil Yosef Mizrahi |
author_sort |
Noemi Tel-Zur |
title |
In Support of Winge's Theory of “Hybridization Followed by Chromosome Doubling” |
title_short |
In Support of Winge's Theory of “Hybridization Followed by Chromosome Doubling” |
title_full |
In Support of Winge's Theory of “Hybridization Followed by Chromosome Doubling” |
title_fullStr |
In Support of Winge's Theory of “Hybridization Followed by Chromosome Doubling” |
title_full_unstemmed |
In Support of Winge's Theory of “Hybridization Followed by Chromosome Doubling” |
title_sort |
in support of winge's theory of “hybridization followed by chromosome doubling” |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Plant Science |
issn |
1664-462X |
publishDate |
2020-06-01 |
description |
Polyploidy—or chromosome doubling—plays a significant role in plant speciation and evolution. Much of the existing evidence indicates that fusion of unreduced (or 2n) gametes is the major pathway responsible for polyploid formation. In the early 1900s, a theory was put forward that the mechanism of “hybridization followed by chromosome doubling” would enable the survival and development of the hybrid zygote by providing each chromosome with a homolog with which to pair. However, to date there is only scant empirical evidence supporting this theory. In our previous study, interspecific-interploid crosses between the tetraploid Hylocereus megalanthus, as the female parent, and the diploid H. undatus, as the male parent, yielded only allopentaploids, allohexaploids, and 5x-and 6x-aneuploids instead of the expected allotriploids. No viable hybrids were obtained from the reciprocal cross. Since H. undatus underwent normal meiosis with regular pairing in the pollen mother cells and only reduced pollen grains were observed, the allohexaploids obtained supported the concept of “chromosome doubling.” In this work, we report ploidy level, fruit morphology, and pollen viability and diameter in a group of putative hybrids obtained from an embryo rescue procedure following controlled H. megalanthus × H. undatus crosses, with the aim to elucidate, for the first time, the timing and developmental stage of the chromosome doubling. As in our previous report, no triploids were obtained, but tetraploids, pentaploids, hexaploids, and 5x- and 6x-aneuploids were found in the regenerated plants. The tetraploids exhibited the morphological features of the maternal parent and could not be considered true hybrids. Based on our previous studies, we can assume that the pentaploids were a result of a fertilization event between one unreduced (2n) female gamete from the tetraploid H. megalanthus and a normal (n) haploid male gamete from H. undatus. All the allohexaploids obtained from the embryo rescue technique where those that regenerated from fertilized ovules 10 days after pollination (at the pro-embryo stage), showing that the chromosome doubling event occurred at a very early development stage, i.e., at the zygote stage or shortly after zygote formation. These allohexaploids thus constitute empirical evidence of “hybridization followed by chromosome doubling.” |
topic |
allopolyploidization flow cytometry genome duplication Hylocereus interspecific-interploid crosses true hybrids |
url |
https://www.frontiersin.org/article/10.3389/fpls.2020.00954/full |
work_keys_str_mv |
AT noemitelzur insupportofwingestheoryofhybridizationfollowedbychromosomedoubling AT josephmouyal insupportofwingestheoryofhybridizationfollowedbychromosomedoubling AT udizurgil insupportofwingestheoryofhybridizationfollowedbychromosomedoubling AT yosefmizrahi insupportofwingestheoryofhybridizationfollowedbychromosomedoubling |
_version_ |
1724643220079509504 |