Numerical Method for Calculating Non-stationary Processes in the Non-homogeneous Electric Circuit. Direct and Reverse Problem

In the paper has been proposed the conservative numerical scheme of the calculation of dynamic processes in non-homogeneous electric circuits until reaching the phase of the stationary process. The numerical calculation scheme ensures the accuracy of the solution also in the case of the process anal...

Full description

Bibliographic Details
Main Authors: Berzan V., Patsiuk V., Rybakova G.
Format: Article
Language:English
Published: Academy of Sciences of Moldova 2017-08-01
Series:Problems of the Regional Energetics
Subjects:
Online Access:http://journal.ie.asm.md/assets/files/03_02_34_2017.pdf
Description
Summary:In the paper has been proposed the conservative numerical scheme of the calculation of dynamic processes in non-homogeneous electric circuits until reaching the phase of the stationary process. The numerical calculation scheme ensures the accuracy of the solution also in the case of the process analysis in the circuits with significant loss and dissipation of energy. The proposed method is also robust to solve the inverse problem in the field of mathematical physics, thus restoring the initial parameters of the non-stationary process based on the knowledge of the distribution of the voltage and current waves in the circuit. The results of the numerical solution were compared with those obtained by the finite difference of time method (FDTD) and the Godunov scheme. Calculations of the non-stationary process were performed in the partially homogeneous circuit with energy losses and high variability of linear parameters. The circuit under consideration is similar to the stator winding of a high power generator. It has been demonstrated the possibility of restoring the initial excitation parameters, for example, due to partial discharges or a short pulse. It has been found that the proposed numerical method can be used for purposes of increasing the precision of diagnosing the current state of insulation of high power rotating electric machines as a result of solving the inverse problem of the propagation of current and voltage waves in the non-homogeneous circuit.
ISSN:1857-0070