Stability analysis of seidel type multicomponent iterative method

This paper deals with the stability analysis of multicomponent iterative methods for solving elliptic problems. They are based on a general splitting method, which decomposes a multidimensional parabolic problem into a system of one dimensional implicit problems. Error estimates in the L 2 norm are...

Full description

Bibliographic Details
Main Authors: V. N. Abrashin, R. Čiegis, V. Pakeniene, N. G. Zhadaeva
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2002-06-01
Series:Mathematical Modelling and Analysis
Subjects:
-
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9814
id doaj-f1af0cc6371c42a59256070cb9224a7a
record_format Article
spelling doaj-f1af0cc6371c42a59256070cb9224a7a2021-07-02T07:32:07ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102002-06-017110.3846/13926292.2002.9637172Stability analysis of seidel type multicomponent iterative methodV. N. Abrashin0R. Čiegis1V. Pakeniene2N. G. Zhadaeva3Institute of Mathematics , National Academy of Sciences of Belarus , Surganov Str. 11, Minsk, 220072, BelarusVilnius Gediminas Technical University , Sauletekio al. 11, Vilnius, LT‐2040, LithuaniaVilnius Gediminas Technical University , Sauletekio al. 11, Vilnius, LT‐2040, LithuaniaInstitute of Mathematics , National Academy of Sciences of Belarus , Surganov Str. 11, Minsk, 220072, Belarus This paper deals with the stability analysis of multicomponent iterative methods for solving elliptic problems. They are based on a general splitting method, which decomposes a multidimensional parabolic problem into a system of one dimensional implicit problems. Error estimates in the L 2 norm are proved for the first method. For the stability analysis of Seidel type iterative method we use a spectral method. Two dimensional and three dimensional problems are investigated. Finally, we present results of numerical experiments. Our goal is to investigate the dependence of convergence rates of multicomponent iterative methods on the smoothness of the solution. Hence we solve a discrete problem, which approximates the 3D Poisson's problem. It is proved that the number of iterations depends weakly on the number of grid points if the exact solution and the initial approximation are smooth functions, both. The same problem is also solved by the Stability Correction iterative method. The obtained results indicate a similar behavior. Zeidelio tipo daugiakomponentinio itercinio metodo stabilumo analizė Santrauka Šiame straipsnyje tesiama daugiakomponentiniu iteraciniu metodu stabilumo analize, pradeta ankstesniuose autoriu darbuose. Irodytas vienos schemos sprendinio konvergavimas L 2 normoje. Spektriniu metodu ištirtas dvieju Zeidelio tipo iteraciniu schemu stabilumas dvimačiu atveju, irodyta, kad dvimačiu atveju abi schemos yra nesalygiškai stabilios. Trimačio uždavinio spektrinio stabilumo analize atlikta skaitiškai. Irodyta, kad modifikuotoji schema pasižymi didesniu konvergavimo greičiu. Paskutiniame skyriuje pateikti skaičiavimo eksperimento rezultatai. Buvo sprendžiamas trimatis Puasono uždavinys, aproksimuotas standartine baigtiniu skirtumu schema. Ištirta iteraciniu metodu konvergavimo greičio priklausomybe nuo sprendinio ir pradinio artinio glodumo. Parodyta, kad baigtiniu skirtumu schemoms konvergavimo greitis gali silpnai priklausyti nuo diskrečiojo tinklo mazgu skaičiaus, jei pradine paklaida yra glodi funkcija. Daugiakomponentiniai iteraciniai metodai palyginti su stabilizuojančios pataisos metodu, kuris irgi yra nesalygiškai stabilus. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9814-
collection DOAJ
language English
format Article
sources DOAJ
author V. N. Abrashin
R. Čiegis
V. Pakeniene
N. G. Zhadaeva
spellingShingle V. N. Abrashin
R. Čiegis
V. Pakeniene
N. G. Zhadaeva
Stability analysis of seidel type multicomponent iterative method
Mathematical Modelling and Analysis
-
author_facet V. N. Abrashin
R. Čiegis
V. Pakeniene
N. G. Zhadaeva
author_sort V. N. Abrashin
title Stability analysis of seidel type multicomponent iterative method
title_short Stability analysis of seidel type multicomponent iterative method
title_full Stability analysis of seidel type multicomponent iterative method
title_fullStr Stability analysis of seidel type multicomponent iterative method
title_full_unstemmed Stability analysis of seidel type multicomponent iterative method
title_sort stability analysis of seidel type multicomponent iterative method
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2002-06-01
description This paper deals with the stability analysis of multicomponent iterative methods for solving elliptic problems. They are based on a general splitting method, which decomposes a multidimensional parabolic problem into a system of one dimensional implicit problems. Error estimates in the L 2 norm are proved for the first method. For the stability analysis of Seidel type iterative method we use a spectral method. Two dimensional and three dimensional problems are investigated. Finally, we present results of numerical experiments. Our goal is to investigate the dependence of convergence rates of multicomponent iterative methods on the smoothness of the solution. Hence we solve a discrete problem, which approximates the 3D Poisson's problem. It is proved that the number of iterations depends weakly on the number of grid points if the exact solution and the initial approximation are smooth functions, both. The same problem is also solved by the Stability Correction iterative method. The obtained results indicate a similar behavior. Zeidelio tipo daugiakomponentinio itercinio metodo stabilumo analizė Santrauka Šiame straipsnyje tesiama daugiakomponentiniu iteraciniu metodu stabilumo analize, pradeta ankstesniuose autoriu darbuose. Irodytas vienos schemos sprendinio konvergavimas L 2 normoje. Spektriniu metodu ištirtas dvieju Zeidelio tipo iteraciniu schemu stabilumas dvimačiu atveju, irodyta, kad dvimačiu atveju abi schemos yra nesalygiškai stabilios. Trimačio uždavinio spektrinio stabilumo analize atlikta skaitiškai. Irodyta, kad modifikuotoji schema pasižymi didesniu konvergavimo greičiu. Paskutiniame skyriuje pateikti skaičiavimo eksperimento rezultatai. Buvo sprendžiamas trimatis Puasono uždavinys, aproksimuotas standartine baigtiniu skirtumu schema. Ištirta iteraciniu metodu konvergavimo greičio priklausomybe nuo sprendinio ir pradinio artinio glodumo. Parodyta, kad baigtiniu skirtumu schemoms konvergavimo greitis gali silpnai priklausyti nuo diskrečiojo tinklo mazgu skaičiaus, jei pradine paklaida yra glodi funkcija. Daugiakomponentiniai iteraciniai metodai palyginti su stabilizuojančios pataisos metodu, kuris irgi yra nesalygiškai stabilus. First Published Online: 14 Oct 2010
topic -
url https://journals.vgtu.lt/index.php/MMA/article/view/9814
work_keys_str_mv AT vnabrashin stabilityanalysisofseideltypemulticomponentiterativemethod
AT rciegis stabilityanalysisofseideltypemulticomponentiterativemethod
AT vpakeniene stabilityanalysisofseideltypemulticomponentiterativemethod
AT ngzhadaeva stabilityanalysisofseideltypemulticomponentiterativemethod
_version_ 1721335983123726336