Adopting Machine Learning and Spatial Analysis Techniques for Driver Risk Assessment: Insights from a Case Study

Traffic violations usually caused by aggressive driving behavior are often seen as a primary contributor to traffic crashes. Violations are either caused by an unintentional or deliberate act of drivers that jeopardize the lives of fellow drivers, pedestrians, and property. This study is aimed to in...

Full description

Bibliographic Details
Main Authors: Muhammad Zahid, Yangzhou Chen, Arshad Jamal, Khalaf A. Al-Ofi, Hassan M. Al-Ahmadi
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:International Journal of Environmental Research and Public Health
Subjects:
Online Access:https://www.mdpi.com/1660-4601/17/14/5193
Description
Summary:Traffic violations usually caused by aggressive driving behavior are often seen as a primary contributor to traffic crashes. Violations are either caused by an unintentional or deliberate act of drivers that jeopardize the lives of fellow drivers, pedestrians, and property. This study is aimed to investigate different traffic violations (overspeeding, wrong-way driving, illegal parking, non-compliance traffic control devices, etc.) using spatial analysis and different machine learning methods. Georeferenced violation data along two expressways (S308<i> </i>and<i> </i>S219) for the year 2016 was obtained from the traffic police department, in the city of Luzhou, China. Detailed descriptive analysis of the data showed that wrong-way driving was the most common violation type observed. Inverse Distance Weighted (IDW) interpolation in the ArcMap Geographic Information System (GIS) was used to develop violation hotspots zones to guide on efficient use of limited resources during the treatment of high-risk sites. Lastly, a systematic Machine Learning (ML) framework, such as K Nearest Neighbors (KNN) models (using k = 3, 5, 7, 10, and 12), support vector machine (SVM), and CN2 Rule Inducer, was utilized for classification and prediction of each violation type as a function of several explanatory variables. The predictive performance of proposed ML models was examined using different evaluation metrics, such as Area Under the Curve (AUC), F-score, precision, recall, specificity, and run time. The results also showed that the KNN model with k = 7 using manhattan evaluation had an accuracy of 99% and outperformed the SVM and CN2 Rule Inducer. The outcome of this study could provide the practitioners and decision-makers with essential insights for appropriate engineering and traffic control measures to improve the safety of road-users.
ISSN:1661-7827
1660-4601