Underwater Object Detection using Tensorflow

Object Detection is a popular technology that detects instances within an image. In order to eliminate the barriers in Computer Vision technology due to the dissolution of the BGR(Blue-Green-Red) constituents with the increase in depth, it has been a necessity that the accuracy and efficiency of det...

Full description

Bibliographic Details
Main Authors: Mahavarkar Avinash, Kadwadkar Ritika, Maurya Sneha, Raveendran Smitha
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:ITM Web of Conferences
Online Access:https://www.itm-conferences.org/articles/itmconf/pdf/2020/02/itmconf_icacc2020_03037.pdf
Description
Summary:Object Detection is a popular technology that detects instances within an image. In order to eliminate the barriers in Computer Vision technology due to the dissolution of the BGR(Blue-Green-Red) constituents with the increase in depth, it has been a necessity that the accuracy and efficiency of detecting any object underwater is optimum. In this article, we conduct Underwater Object Detection using Machine Learning through Tensorflow and Image Processing along with Faster R-CNN (Regions with Convolution Neural Network) as an algorithm for implementation. A suitable environment will be created so that Machine Learning algorithm will be used to train different images of the object. Open source Computer Vision has various functions which can be used for the image processing needs when an image is captured.
ISSN:2271-2097