Connecting quasinormal modes and heat kernels in 1-loop determinants

We connect two different approaches for calculating functional determinants on quotients of hyperbolic spacetime: the heat kernel method and the quasinormal mode method. For the example of a rotating BTZ background, we show how the image sum in the heat kernel method builds up the logarithms in t...

Full description

Bibliographic Details
Main Author: Cynthia Keeler, Victoria L. Martin, Andrew Svesko
Format: Article
Language:English
Published: SciPost 2020-02-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.8.2.017
id doaj-f18e1c99deed4f62bb696d85aaebb995
record_format Article
spelling doaj-f18e1c99deed4f62bb696d85aaebb9952020-11-25T02:04:58ZengSciPostSciPost Physics2542-46532020-02-018201710.21468/SciPostPhys.8.2.017Connecting quasinormal modes and heat kernels in 1-loop determinantsCynthia Keeler, Victoria L. Martin, Andrew SveskoWe connect two different approaches for calculating functional determinants on quotients of hyperbolic spacetime: the heat kernel method and the quasinormal mode method. For the example of a rotating BTZ background, we show how the image sum in the heat kernel method builds up the logarithms in the quasinormal mode method, while the thermal sum in the quasinormal mode method builds up the integrand of the heat kernel. More formally, we demonstrate how the heat kernel and quasinormal mode methods are linked via the Selberg zeta function. We show that a 1-loop partition function computed using the heat kernel method may be cast as a Selberg zeta function whose zeros encode quasinormal modes. We discuss how our work may be used to predict quasinormal modes on more complicated spacetimes.https://scipost.org/SciPostPhys.8.2.017
collection DOAJ
language English
format Article
sources DOAJ
author Cynthia Keeler, Victoria L. Martin, Andrew Svesko
spellingShingle Cynthia Keeler, Victoria L. Martin, Andrew Svesko
Connecting quasinormal modes and heat kernels in 1-loop determinants
SciPost Physics
author_facet Cynthia Keeler, Victoria L. Martin, Andrew Svesko
author_sort Cynthia Keeler, Victoria L. Martin, Andrew Svesko
title Connecting quasinormal modes and heat kernels in 1-loop determinants
title_short Connecting quasinormal modes and heat kernels in 1-loop determinants
title_full Connecting quasinormal modes and heat kernels in 1-loop determinants
title_fullStr Connecting quasinormal modes and heat kernels in 1-loop determinants
title_full_unstemmed Connecting quasinormal modes and heat kernels in 1-loop determinants
title_sort connecting quasinormal modes and heat kernels in 1-loop determinants
publisher SciPost
series SciPost Physics
issn 2542-4653
publishDate 2020-02-01
description We connect two different approaches for calculating functional determinants on quotients of hyperbolic spacetime: the heat kernel method and the quasinormal mode method. For the example of a rotating BTZ background, we show how the image sum in the heat kernel method builds up the logarithms in the quasinormal mode method, while the thermal sum in the quasinormal mode method builds up the integrand of the heat kernel. More formally, we demonstrate how the heat kernel and quasinormal mode methods are linked via the Selberg zeta function. We show that a 1-loop partition function computed using the heat kernel method may be cast as a Selberg zeta function whose zeros encode quasinormal modes. We discuss how our work may be used to predict quasinormal modes on more complicated spacetimes.
url https://scipost.org/SciPostPhys.8.2.017
work_keys_str_mv AT cynthiakeelervictorialmartinandrewsvesko connectingquasinormalmodesandheatkernelsin1loopdeterminants
_version_ 1724940017741070336