Sobolev regularity of the Bergman projection on certain pseudoconvex domains

In this paper we study the Sobolev regularity of the Bergman projection B and the ∂¯-Neumann operator N on a certain pseudoconvex domain. We show that if Ω is a domain with Lipschitz boundary, which is relatively compact in an n-dimensional compact Kähler manifold and satisfies some “logδ-pseudoconv...

Full description

Bibliographic Details
Main Author: Sayed Saber
Format: Article
Language:English
Published: Elsevier 2017-04-01
Series:Transactions of A. Razmadze Mathematical Institute
Online Access:http://www.sciencedirect.com/science/article/pii/S2346809216300071
id doaj-f185285ec6794d4289a019fb87493efa
record_format Article
spelling doaj-f185285ec6794d4289a019fb87493efa2020-11-24T22:01:12ZengElsevierTransactions of A. Razmadze Mathematical Institute2346-80922017-04-01171190102Sobolev regularity of the Bergman projection on certain pseudoconvex domainsSayed Saber0Mathematics Department, Faculty of Science, Beni-Suef University, EgyptIn this paper we study the Sobolev regularity of the Bergman projection B and the ∂¯-Neumann operator N on a certain pseudoconvex domain. We show that if Ω is a domain with Lipschitz boundary, which is relatively compact in an n-dimensional compact Kähler manifold and satisfies some “logδ-pseudoconvexity” condition, the operators B, N and ∂¯∗N are regular in the Sobolev spaces Wr,sk(Ω,E) for forms with values in a holomorphic vector bundle E and for any k<η/2, 0<η<1, 0≤r≤n, 0≤s≤n−1. Keywords: ∂¯-Neumann operator, Bergman projection, Kähler manifold, Pseudoconvex domainhttp://www.sciencedirect.com/science/article/pii/S2346809216300071
collection DOAJ
language English
format Article
sources DOAJ
author Sayed Saber
spellingShingle Sayed Saber
Sobolev regularity of the Bergman projection on certain pseudoconvex domains
Transactions of A. Razmadze Mathematical Institute
author_facet Sayed Saber
author_sort Sayed Saber
title Sobolev regularity of the Bergman projection on certain pseudoconvex domains
title_short Sobolev regularity of the Bergman projection on certain pseudoconvex domains
title_full Sobolev regularity of the Bergman projection on certain pseudoconvex domains
title_fullStr Sobolev regularity of the Bergman projection on certain pseudoconvex domains
title_full_unstemmed Sobolev regularity of the Bergman projection on certain pseudoconvex domains
title_sort sobolev regularity of the bergman projection on certain pseudoconvex domains
publisher Elsevier
series Transactions of A. Razmadze Mathematical Institute
issn 2346-8092
publishDate 2017-04-01
description In this paper we study the Sobolev regularity of the Bergman projection B and the ∂¯-Neumann operator N on a certain pseudoconvex domain. We show that if Ω is a domain with Lipschitz boundary, which is relatively compact in an n-dimensional compact Kähler manifold and satisfies some “logδ-pseudoconvexity” condition, the operators B, N and ∂¯∗N are regular in the Sobolev spaces Wr,sk(Ω,E) for forms with values in a holomorphic vector bundle E and for any k<η/2, 0<η<1, 0≤r≤n, 0≤s≤n−1. Keywords: ∂¯-Neumann operator, Bergman projection, Kähler manifold, Pseudoconvex domain
url http://www.sciencedirect.com/science/article/pii/S2346809216300071
work_keys_str_mv AT sayedsaber sobolevregularityofthebergmanprojectiononcertainpseudoconvexdomains
_version_ 1725841072347676672