Novel Applicators for Local Microwave Hyperthermia Based on Zeroth-Order Mode Resonator Metamaterial

It is demonstrated that a theory of zero-order mode resonator (ZOR) metamaterial (MTM) structure can be used for the development of a novel class of applicators for microwave thermotherapy, for example, for hyperthermia in cancer treatment or for physiotherapy. The main idea of creating such an appl...

Full description

Bibliographic Details
Main Authors: David Vrba, Jan Vrba
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2014/631398
Description
Summary:It is demonstrated that a theory of zero-order mode resonator (ZOR) metamaterial (MTM) structure can be used for the development of a novel class of applicators for microwave thermotherapy, for example, for hyperthermia in cancer treatment or for physiotherapy. The main idea of creating such an applicator is to generate and radiate a plane electromagnetic (EM) wave into the treated biological tissue, at least in a certain extent. The main aim of this paper is to investigate whether an EM wave generated by ZOR MTM structure and emitted into the biological tissue can produce a homogeneous SAR distribution in the planes parallel to the applicator aperture and achieve a penetration depth approaching the theoretical limit represented by SAR distribution and penetration depth of an ideal EM plane wave. EM field distribution inside a virtual phantom of the treated region generated by the applicator that is based on the proposed ZOR MTM principle is investigated using a well-proven full-wave commercial simulation tool. The proposed applicator type shows both a low unwanted leaked electromagnetic field and a fairly homogeneous electric field in its aperture as well as in the virtual phantom of the treated region.
ISSN:1687-5869
1687-5877