Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses
<p>Coastal wetlands are essential for regulating the global carbon budget through soil carbon sequestration and greenhouse gas (GHG – <span class="inline-formula">CO<sub>2</sub></span>, <span class="inline-formula">CH<sub>4</sub><...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-09-01
|
Series: | Biogeosciences |
Online Access: | https://bg.copernicus.org/articles/18/5085/2021/bg-18-5085-2021.pdf |
Summary: | <p>Coastal wetlands are essential for regulating the global carbon
budget through soil carbon sequestration and greenhouse gas (GHG – <span class="inline-formula">CO<sub>2</sub></span>, <span class="inline-formula">CH<sub>4</sub></span>, and <span class="inline-formula">N<sub>2</sub>O</span>) fluxes. The conversion of coastal wetlands to
agricultural land alters these fluxes' magnitude and direction
(uptake/release). However, the extent and drivers of change of GHG fluxes are
still unknown for many tropical regions. We measured soil GHG fluxes from
three natural coastal wetlands – mangroves, salt marsh, and freshwater tidal
forests – and two alternative agricultural land uses – sugarcane farming and
pastures for cattle grazing (ponded and dry conditions). We assessed
variations throughout different climatic conditions (dry–cool, dry–hot, and
wet–hot) within 2 years of measurements (2018–2020) in tropical Australia.
The wet pasture had by far the highest <span class="inline-formula">CH<sub>4</sub></span> emissions with <span class="inline-formula">1231±386</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">mg</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">d</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="56pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9a351d59159677021c73cdc4349d131e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-5085-2021-ie00001.svg" width="56pt" height="15pt" src="bg-18-5085-2021-ie00001.png"/></svg:svg></span></span>, which were 200-fold higher than any other site.
Dry pastures and sugarcane were the highest emitters of <span class="inline-formula">N<sub>2</sub>O</span>
with <span class="inline-formula">55±9</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">mg</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">d</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="56pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9e5722e5bcab6aa6a1a092c5b6ff7b79"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-5085-2021-ie00002.svg" width="56pt" height="15pt" src="bg-18-5085-2021-ie00002.png"/></svg:svg></span></span> (wet–hot period) and <span class="inline-formula">11±3</span> m<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">d</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5c097377f94715c27c133a5814e4070b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-5085-2021-ie00003.svg" width="47pt" height="15pt" src="bg-18-5085-2021-ie00003.png"/></svg:svg></span></span> (hot-dry period, coinciding with fertilisation), respectively. Dry
pastures were also the highest emitters of <span class="inline-formula">CO<sub>2</sub></span> with <span class="inline-formula">20±1</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">d</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c0aab21059d0ee7939623231dab627b6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-5085-2021-ie00004.svg" width="47pt" height="15pt" src="bg-18-5085-2021-ie00004.png"/></svg:svg></span></span> (wet–hot period). The three coastal wetlands measured had
lower emissions, with salt marsh uptake of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.55</mn><mo>±</mo><mn mathvariant="normal">0.23</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6441b7abd15f03ffdd21a117acd67400"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-5085-2021-ie00005.svg" width="64pt" height="10pt" src="bg-18-5085-2021-ie00005.png"/></svg:svg></span></span> and
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.19</mn><mo>±</mo><mn mathvariant="normal">0.08</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e1975a3ba25cfd0f9036d25f0ca90dc4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-5085-2021-ie00006.svg" width="64pt" height="10pt" src="bg-18-5085-2021-ie00006.png"/></svg:svg></span></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">d</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8521700b0b05a966a960bc5a0514c3d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-5085-2021-ie00007.svg" width="47pt" height="15pt" src="bg-18-5085-2021-ie00007.png"/></svg:svg></span></span> of <span class="inline-formula">N<sub>2</sub>O</span> and <span class="inline-formula">CO<sub>2</sub></span>, respectively, during the dry–hot
period. During the sampled period, sugarcane and pastures had higher total
cumulative soil GHG emissions (<span class="inline-formula">CH<sub>4</sub>+N<sub>2</sub>O</span>) of 7142 and 56 124 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msub><mi mathvariant="normal">CO</mi><mtext>2-eq</mtext></msub><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">kg</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">ha</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="92pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="3404ea53ae88124f3c211523f4fcccc3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-5085-2021-ie00008.svg" width="92pt" height="17pt" src="bg-18-5085-2021-ie00008.png"/></svg:svg></span></span> compared to coastal wetlands with 144 to
884 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msub><mi mathvariant="normal">CO</mi><mtext>2-eq</mtext></msub><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">kg</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">ha</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="92pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="716ab3705b9260c90ed57e50f15f05b0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-5085-2021-ie00009.svg" width="92pt" height="17pt" src="bg-18-5085-2021-ie00009.png"/></svg:svg></span></span> (where <span class="inline-formula">CO<sub>2-eq</sub></span> is <span class="inline-formula">CO<sub>2</sub></span> equivalent). Restoring unproductive sugarcane
land or pastures (especially ponded ones) to coastal wetlands could provide
significant GHG mitigation.</p> |
---|---|
ISSN: | 1726-4170 1726-4189 |