Different role of circulating myeloid-derived suppressor cells in patients with multiple myeloma undergoing autologous stem cell transplantation

Abstract Background The aim of this study is to evaluate the prognostic impact of myeloid-derived suppressor cells (MDSCs) in multiple myeloma (MM) in the context of autologous stem cell transplantation (ASCT). Methods Peripheral blood samples were collected for measuring monocytic (M-) MDSCs (CD14p...

Full description

Bibliographic Details
Main Authors: Sung-Eun Lee, Ji-Young Lim, Tae Woo Kim, Da-Bin Ryu, Sung Soo Park, Young-Woo Jeon, Jae-Ho Yoon, Byung-Sik Cho, Ki-Seong Eom, Yoo-Jin Kim, Hee-Je Kim, Seok Lee, Seok-Goo Cho, Dong-Wook Kim, Jong Wook Lee, Chang-Ki Min
Format: Article
Language:English
Published: BMJ Publishing Group 2019-02-01
Series:Journal for ImmunoTherapy of Cancer
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40425-018-0491-y
Description
Summary:Abstract Background The aim of this study is to evaluate the prognostic impact of myeloid-derived suppressor cells (MDSCs) in multiple myeloma (MM) in the context of autologous stem cell transplantation (ASCT). Methods Peripheral blood samples were collected for measuring monocytic (M-) MDSCs (CD14posHLA-DRlow/neg) and early-stage (E-) MDSCs (LinnegHLA-DRnegCD33posCD11bpos) before and after ASCT. Clinical outcomes following ASCT differed according to the frequency of each MDSC phenotype. Results In the pre-ASCT analyses, lower M-MDSCs (<median) but not E-MDSCs were associated with a longer time to progression (TTP), whereas both MDSC phenotypes post-ASCT did not have a role in TTP. Both MDSC phenotypes pre-ASCT but not post-ASCT similarly suppressed in vitro autologous T and natural killer T cell proliferation. Importantly, pre-ASCT M-MDSCs more strongly inhibited the in vitro cytotoxic effect of melphalan compared with pre-ASCT E-MDSCs. Transcriptome analysis of each isolated MDSC subtype showed that expression of osteoclastic differentiation factors, particularly colony-stimulating factor 1 receptor (CSF1R), was significantly increased in M-MDSCs pre-ASCT. Finally, blockade of CSF1R substantially recovered the melphalan-induced cytotoxicity reduced by pre-ASCT M-MDSCs. Conclusions Our data demonstrate that pre-ASCT M-MDSCs are correlated with poor clinical outcomes after ASCT through reduced cytotoxicity of melphalan. We propose that targeting CSF1R on these cells may improve the results of ASCT in MM.
ISSN:2051-1426