Velocity Gradient Separation Reveals a New Extracellular Vesicle Population Enriched in miR-155 and Mitochondrial DNA

Extracellular vesicles (EVs) and their contents (proteins, lipids, messenger RNA, microRNA, and DNA) are viewed as intercellular signals, cell-transforming agents, and shelters for viruses that allow both diagnostic and therapeutic interventions. EVs circulating in the blood of individuals infected...

Full description

Bibliographic Details
Main Authors: Myriam Vaillancourt, Audrey Hubert, Caroline Subra, Julien Boucher, Wilfried Wenceslas Bazié, Julien Vitry, Sofiane Berrazouane, Jean-Pierre Routy, Sylvie Trottier, Cécile Tremblay, Mohammad-Ali Jenabian, Abderrahim Benmoussa, Patrick Provost, Philippe A. Tessier, Caroline Gilbert
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Pathogens
Subjects:
HIV
Online Access:https://www.mdpi.com/2076-0817/10/5/526
id doaj-f121592e4c494004b61c9ba57cfe0058
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Myriam Vaillancourt
Audrey Hubert
Caroline Subra
Julien Boucher
Wilfried Wenceslas Bazié
Julien Vitry
Sofiane Berrazouane
Jean-Pierre Routy
Sylvie Trottier
Cécile Tremblay
Mohammad-Ali Jenabian
Abderrahim Benmoussa
Patrick Provost
Philippe A. Tessier
Caroline Gilbert
spellingShingle Myriam Vaillancourt
Audrey Hubert
Caroline Subra
Julien Boucher
Wilfried Wenceslas Bazié
Julien Vitry
Sofiane Berrazouane
Jean-Pierre Routy
Sylvie Trottier
Cécile Tremblay
Mohammad-Ali Jenabian
Abderrahim Benmoussa
Patrick Provost
Philippe A. Tessier
Caroline Gilbert
Velocity Gradient Separation Reveals a New Extracellular Vesicle Population Enriched in miR-155 and Mitochondrial DNA
Pathogens
biomarker
calprotectin
extracellular vesicles
HIV
miR-92
miR-155
author_facet Myriam Vaillancourt
Audrey Hubert
Caroline Subra
Julien Boucher
Wilfried Wenceslas Bazié
Julien Vitry
Sofiane Berrazouane
Jean-Pierre Routy
Sylvie Trottier
Cécile Tremblay
Mohammad-Ali Jenabian
Abderrahim Benmoussa
Patrick Provost
Philippe A. Tessier
Caroline Gilbert
author_sort Myriam Vaillancourt
title Velocity Gradient Separation Reveals a New Extracellular Vesicle Population Enriched in miR-155 and Mitochondrial DNA
title_short Velocity Gradient Separation Reveals a New Extracellular Vesicle Population Enriched in miR-155 and Mitochondrial DNA
title_full Velocity Gradient Separation Reveals a New Extracellular Vesicle Population Enriched in miR-155 and Mitochondrial DNA
title_fullStr Velocity Gradient Separation Reveals a New Extracellular Vesicle Population Enriched in miR-155 and Mitochondrial DNA
title_full_unstemmed Velocity Gradient Separation Reveals a New Extracellular Vesicle Population Enriched in miR-155 and Mitochondrial DNA
title_sort velocity gradient separation reveals a new extracellular vesicle population enriched in mir-155 and mitochondrial dna
publisher MDPI AG
series Pathogens
issn 2076-0817
publishDate 2021-04-01
description Extracellular vesicles (EVs) and their contents (proteins, lipids, messenger RNA, microRNA, and DNA) are viewed as intercellular signals, cell-transforming agents, and shelters for viruses that allow both diagnostic and therapeutic interventions. EVs circulating in the blood of individuals infected with human immunodeficiency virus (HIV-1) may provide insights into pathogenesis, inflammation, and disease progression. However, distinguishing plasma membrane EVs from exosomes, exomeres, apoptotic bodies, virions, and contaminating proteins remains challenging. We aimed at comparing sucrose and iodixanol density and velocity gradients along with commercial kits as a means of separating EVs from HIV particles and contaminating protein like calprotectin; and thereby evaluating the suitability of current plasma EVs analysis techniques for identifying new biomarkers of HIV-1 immune activation. Multiple analysis have been performed on HIV-1 infected cell lines, plasma from HIV-1 patients, or plasma from HIV-negative individuals spiked with HIV-1. Commercial kits, the differential centrifugation and density or velocity gradients to precipitate and separate HIV, EVs, and proteins such as calprotectin, have been used. EVs, virions, and contaminating proteins were characterized using Western blot, ELISA, RT-PCR, hydrodynamic size measurement, and enzymatic assay. Conversely to iodixanol density or velocity gradient, protein and virions co-sedimented in the same fractions of the sucrose density gradient than AChE-positive EVs. Iodixanol velocity gradient provided the optimal separation of EVs from viruses and free proteins in culture supernatants and plasma samples from a person living with HIV (PLWH) or a control and revealed a new population of large EVs enriched in microRNA miR-155 and mitochondrial DNA. Although EVs and their contents provide helpful information about several key events in HIV-1 pathogenesis, their purification and extensive characterization by velocity gradient must be investigated thoroughly before further use as biomarkers. By revealing a new population of EVs enriched in miR-155 and mitochondrial DNA, this study paves a way to increase our understanding of HIV-1 pathogenesis.
topic biomarker
calprotectin
extracellular vesicles
HIV
miR-92
miR-155
url https://www.mdpi.com/2076-0817/10/5/526
work_keys_str_mv AT myriamvaillancourt velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT audreyhubert velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT carolinesubra velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT julienboucher velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT wilfriedwenceslasbazie velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT julienvitry velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT sofianeberrazouane velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT jeanpierrerouty velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT sylvietrottier velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT ceciletremblay velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT mohammadalijenabian velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT abderrahimbenmoussa velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT patrickprovost velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT philippeatessier velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
AT carolinegilbert velocitygradientseparationrevealsanewextracellularvesiclepopulationenrichedinmir155andmitochondrialdna
_version_ 1721505493086633984
spelling doaj-f121592e4c494004b61c9ba57cfe00582021-04-27T23:02:07ZengMDPI AGPathogens2076-08172021-04-011052652610.3390/pathogens10050526Velocity Gradient Separation Reveals a New Extracellular Vesicle Population Enriched in miR-155 and Mitochondrial DNAMyriam Vaillancourt0Audrey Hubert1Caroline Subra2Julien Boucher3Wilfried Wenceslas Bazié4Julien Vitry5Sofiane Berrazouane6Jean-Pierre Routy7Sylvie Trottier8Cécile Tremblay9Mohammad-Ali Jenabian10Abderrahim Benmoussa11Patrick Provost12Philippe A. Tessier13Caroline Gilbert14Centre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaChronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montréal, QC H4A 3J1, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H3C 3J7, CanadaDépartement des Sciences Biologiques et Centre de Recherche CERMO-FC, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaCentre de Recherche du CHU de Québec-Université Laval, T1-49, 2705 boulevard Laurier, Québec, QC G1V 4G2, CanadaExtracellular vesicles (EVs) and their contents (proteins, lipids, messenger RNA, microRNA, and DNA) are viewed as intercellular signals, cell-transforming agents, and shelters for viruses that allow both diagnostic and therapeutic interventions. EVs circulating in the blood of individuals infected with human immunodeficiency virus (HIV-1) may provide insights into pathogenesis, inflammation, and disease progression. However, distinguishing plasma membrane EVs from exosomes, exomeres, apoptotic bodies, virions, and contaminating proteins remains challenging. We aimed at comparing sucrose and iodixanol density and velocity gradients along with commercial kits as a means of separating EVs from HIV particles and contaminating protein like calprotectin; and thereby evaluating the suitability of current plasma EVs analysis techniques for identifying new biomarkers of HIV-1 immune activation. Multiple analysis have been performed on HIV-1 infected cell lines, plasma from HIV-1 patients, or plasma from HIV-negative individuals spiked with HIV-1. Commercial kits, the differential centrifugation and density or velocity gradients to precipitate and separate HIV, EVs, and proteins such as calprotectin, have been used. EVs, virions, and contaminating proteins were characterized using Western blot, ELISA, RT-PCR, hydrodynamic size measurement, and enzymatic assay. Conversely to iodixanol density or velocity gradient, protein and virions co-sedimented in the same fractions of the sucrose density gradient than AChE-positive EVs. Iodixanol velocity gradient provided the optimal separation of EVs from viruses and free proteins in culture supernatants and plasma samples from a person living with HIV (PLWH) or a control and revealed a new population of large EVs enriched in microRNA miR-155 and mitochondrial DNA. Although EVs and their contents provide helpful information about several key events in HIV-1 pathogenesis, their purification and extensive characterization by velocity gradient must be investigated thoroughly before further use as biomarkers. By revealing a new population of EVs enriched in miR-155 and mitochondrial DNA, this study paves a way to increase our understanding of HIV-1 pathogenesis.https://www.mdpi.com/2076-0817/10/5/526biomarkercalprotectinextracellular vesiclesHIVmiR-92miR-155