Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats
As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Associação Brasileira de Divulgação Científica
2015-07-01
|
Series: | Brazilian Journal of Medical and Biological Research |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000700650&lng=en&tlng=en |
id |
doaj-f0f97cf047944174bc6407946b6d28ca |
---|---|
record_format |
Article |
spelling |
doaj-f0f97cf047944174bc6407946b6d28ca2020-11-24T22:45:14ZengAssociação Brasileira de Divulgação CientíficaBrazilian Journal of Medical and Biological Research1414-431X2015-07-0148765065310.1590/1414-431X20154356S0100-879X2015000700650Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in ratsR.A.L. SertiéS. AndreottiA.R.G. ProençaA.B. CampañaF.B. LimaAs it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000700650&lng=en&tlng=enPhysical detrainingAdipocytesGlucose uptakeGlucose oxidationLipogenesis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
R.A.L. Sertié S. Andreotti A.R.G. Proença A.B. Campaña F.B. Lima |
spellingShingle |
R.A.L. Sertié S. Andreotti A.R.G. Proença A.B. Campaña F.B. Lima Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats Brazilian Journal of Medical and Biological Research Physical detraining Adipocytes Glucose uptake Glucose oxidation Lipogenesis |
author_facet |
R.A.L. Sertié S. Andreotti A.R.G. Proença A.B. Campaña F.B. Lima |
author_sort |
R.A.L. Sertié |
title |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title_short |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title_full |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title_fullStr |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title_full_unstemmed |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title_sort |
fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
publisher |
Associação Brasileira de Divulgação Científica |
series |
Brazilian Journal of Medical and Biological Research |
issn |
1414-431X |
publishDate |
2015-07-01 |
description |
As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes. |
topic |
Physical detraining Adipocytes Glucose uptake Glucose oxidation Lipogenesis |
url |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000700650&lng=en&tlng=en |
work_keys_str_mv |
AT ralsertie fatgainwithphysicaldetrainingiscorrelatedwithincreasedglucosetransportandoxidationinperiepididymalwhiteadiposetissueinrats AT sandreotti fatgainwithphysicaldetrainingiscorrelatedwithincreasedglucosetransportandoxidationinperiepididymalwhiteadiposetissueinrats AT argproenca fatgainwithphysicaldetrainingiscorrelatedwithincreasedglucosetransportandoxidationinperiepididymalwhiteadiposetissueinrats AT abcampana fatgainwithphysicaldetrainingiscorrelatedwithincreasedglucosetransportandoxidationinperiepididymalwhiteadiposetissueinrats AT fblima fatgainwithphysicaldetrainingiscorrelatedwithincreasedglucosetransportandoxidationinperiepididymalwhiteadiposetissueinrats |
_version_ |
1725689573842878464 |