7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells
<p>Abstract</p> <p>Background</p> <p>Connexin43 (Cx43) is an integral membrane protein that forms intercellular channels called gap junctions. Intercellular communication in the eye lens relies on an extensive network of gap junctions essential for the maintenance of le...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2004-06-01
|
Series: | Cell Communication and Signaling |
Online Access: | http://www.biosignaling.com/content/2/1/2 |
id |
doaj-f0cd863d95d445d8a2f739518f177478 |
---|---|
record_format |
Article |
spelling |
doaj-f0cd863d95d445d8a2f739518f1774782020-11-25T00:13:28ZengBMCCell Communication and Signaling1478-811X2004-06-0121210.1186/1478-811X-2-27-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cellsPereira PauloCatarino SteveGirão Henrique<p>Abstract</p> <p>Background</p> <p>Connexin43 (Cx43) is an integral membrane protein that forms intercellular channels called gap junctions. Intercellular communication in the eye lens relies on an extensive network of gap junctions essential for the maintenance of lens transparency. The association of Cx43 with cholesterol enriched lipid raft domains was recently demonstrated. The objective of this study is to assess if products of cholesterol oxidation (oxysterols) affect gap junction intercellular communication (GJIC).</p> <p>Results</p> <p>Primary cultures of lens epithelial cells (LEC) were incubated with 7-ketocholesterol (7-Keto), 25-hydroxycholesterol (25-OH) or cholesterol and the subcellular distribution of Cx43 was evaluated by immunofluorescence confocal microscopy. The levels of Cx43 present in gap junction plaques were assessed by its insolubility in Triton X-100 and quantified by western blotting. The stability of Cx43 at the plasma membrane following incubation with oxysterols was evaluated by biotinylation of cell surface proteins. Gap junction intercellular communication was evaluated by transfer of the dye Lucifer yellow. The results obtained showed that 7-keto induces an accumulation of Cx43 at the plasma membrane and an increase in intercellular communication through gap junction. However, incubation with cholesterol or 25-OH did not lead to significant alterations on subcellular distribution of Cx43 nor in intercellular communication. Data further suggests that increased intercellular communication results from increased stability of Cx43 at the plasma membrane, presumably forming functional gap-junctions, as suggested by decreased solubility of Cx43 in 1% Triton X-100. The increased stability of Cx43 at the plasma membrane seems to be specific and not related to disruption of endocytic pathway, as demonstrated by dextran uptake.</p> <p>Conclusions</p> <p>Results demonstrate, for the first time, that 7-keto induces an increase in gap junction intercellular communication, that is most likely due to an increased stability of protein at the plasma membrane and to increased abundance of Cx43 assembled in gap junction plaques.</p> http://www.biosignaling.com/content/2/1/2 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pereira Paulo Catarino Steve Girão Henrique |
spellingShingle |
Pereira Paulo Catarino Steve Girão Henrique 7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells Cell Communication and Signaling |
author_facet |
Pereira Paulo Catarino Steve Girão Henrique |
author_sort |
Pereira Paulo |
title |
7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells |
title_short |
7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells |
title_full |
7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells |
title_fullStr |
7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells |
title_full_unstemmed |
7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells |
title_sort |
7-ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells |
publisher |
BMC |
series |
Cell Communication and Signaling |
issn |
1478-811X |
publishDate |
2004-06-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Connexin43 (Cx43) is an integral membrane protein that forms intercellular channels called gap junctions. Intercellular communication in the eye lens relies on an extensive network of gap junctions essential for the maintenance of lens transparency. The association of Cx43 with cholesterol enriched lipid raft domains was recently demonstrated. The objective of this study is to assess if products of cholesterol oxidation (oxysterols) affect gap junction intercellular communication (GJIC).</p> <p>Results</p> <p>Primary cultures of lens epithelial cells (LEC) were incubated with 7-ketocholesterol (7-Keto), 25-hydroxycholesterol (25-OH) or cholesterol and the subcellular distribution of Cx43 was evaluated by immunofluorescence confocal microscopy. The levels of Cx43 present in gap junction plaques were assessed by its insolubility in Triton X-100 and quantified by western blotting. The stability of Cx43 at the plasma membrane following incubation with oxysterols was evaluated by biotinylation of cell surface proteins. Gap junction intercellular communication was evaluated by transfer of the dye Lucifer yellow. The results obtained showed that 7-keto induces an accumulation of Cx43 at the plasma membrane and an increase in intercellular communication through gap junction. However, incubation with cholesterol or 25-OH did not lead to significant alterations on subcellular distribution of Cx43 nor in intercellular communication. Data further suggests that increased intercellular communication results from increased stability of Cx43 at the plasma membrane, presumably forming functional gap-junctions, as suggested by decreased solubility of Cx43 in 1% Triton X-100. The increased stability of Cx43 at the plasma membrane seems to be specific and not related to disruption of endocytic pathway, as demonstrated by dextran uptake.</p> <p>Conclusions</p> <p>Results demonstrate, for the first time, that 7-keto induces an increase in gap junction intercellular communication, that is most likely due to an increased stability of protein at the plasma membrane and to increased abundance of Cx43 assembled in gap junction plaques.</p> |
url |
http://www.biosignaling.com/content/2/1/2 |
work_keys_str_mv |
AT pereirapaulo 7ketocholesterolmodulatesintercellularcommunicationthroughgapjunctioninbovinelensepithelialcells AT catarinosteve 7ketocholesterolmodulatesintercellularcommunicationthroughgapjunctioninbovinelensepithelialcells AT giraohenrique 7ketocholesterolmodulatesintercellularcommunicationthroughgapjunctioninbovinelensepithelialcells |
_version_ |
1725394086842597376 |