Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical Process

Biodiesel has been proven to be the best reliable alternative for petroleum diesel. Besides, being renewable, it is biodegradable and non-toxic fuel. This paper aimed to study the production of this green fuel using industrial, competitive techniques; base-catalysed transesterification and supercrit...

Full description

Bibliographic Details
Main Authors: N.M. Farrag, M.A. Gadalla, M.K. Fouad
Format: Article
Language:English
Published: AIDIC Servizi S.r.l. 2016-08-01
Series:Chemical Engineering Transactions
Online Access:https://www.cetjournal.it/index.php/cet/article/view/3848
id doaj-f0bfbc6f42e84c3bbae528c8884e43e8
record_format Article
spelling doaj-f0bfbc6f42e84c3bbae528c8884e43e82021-02-19T21:03:42ZengAIDIC Servizi S.r.l.Chemical Engineering Transactions2283-92162016-08-015210.3303/CET1652202Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical ProcessN.M. FarragM.A. GadallaM.K. FouadBiodiesel has been proven to be the best reliable alternative for petroleum diesel. Besides, being renewable, it is biodegradable and non-toxic fuel. This paper aimed to study the production of this green fuel using industrial, competitive techniques; base-catalysed transesterification and supercritical methanol transesterification. The research involved techniques for reaction parameters optimisation and thus embedded optimum values into a simulation-based design procedure for overall energy optimisation/integration and emissions reduction. Literature experimental reaction data for the two technologies conduct an optimisation for biodiesel production. The state-of-the-art process flowsheets for the two processes were used for the study. This optimisation was done for the most affecting parameters on the production processes. The experimental results from the literature for the two techniques were optimally analysed using parameters analyse carried out using Pareto chart, contour plot methodology, and surface plot methodology. The research study revealed that the key process variable for the base-catalysed process was the catalyst loading. On the other hand, for the supercritical methanol process, the most prominent variable was the methanol to oil ratio. The optimal process conditions were used to build an ASPEN HYSYS rigorous simulation model for the previous techniques. The supercritical based-process was chosen for further studies for its better economic performance. Pinch Analysis principles through ASPEN Energy Analyser software were employed to analyse the energy performance of the overall optimum model obtained from ASPEN HYSYS. The energy targets were calculated for biodiesel production using supercritical methanol approach. Composite curves resulted in 3.4 and 3.7 MW for heating and cooling requirements, respectively compared with 4.4 and 4.7 MW for the original process. Finally, a heat exchanger network was developed to accomplish the energy targets proposed by the composite curves. The resulting integrated process flowsheet has better energy saving opportunities. The energy consumption of the optimum case has been reduced by 25 %, and thus substantial cut in the CO2 emissions. Utility curves were also generated to determine the loads of hot utilities to be produced by the proposed energy integration.https://www.cetjournal.it/index.php/cet/article/view/3848
collection DOAJ
language English
format Article
sources DOAJ
author N.M. Farrag
M.A. Gadalla
M.K. Fouad
spellingShingle N.M. Farrag
M.A. Gadalla
M.K. Fouad
Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical Process
Chemical Engineering Transactions
author_facet N.M. Farrag
M.A. Gadalla
M.K. Fouad
author_sort N.M. Farrag
title Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical Process
title_short Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical Process
title_full Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical Process
title_fullStr Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical Process
title_full_unstemmed Reaction Parameters and Energy Optimisation for Biodiesel Production Using a Supercritical Process
title_sort reaction parameters and energy optimisation for biodiesel production using a supercritical process
publisher AIDIC Servizi S.r.l.
series Chemical Engineering Transactions
issn 2283-9216
publishDate 2016-08-01
description Biodiesel has been proven to be the best reliable alternative for petroleum diesel. Besides, being renewable, it is biodegradable and non-toxic fuel. This paper aimed to study the production of this green fuel using industrial, competitive techniques; base-catalysed transesterification and supercritical methanol transesterification. The research involved techniques for reaction parameters optimisation and thus embedded optimum values into a simulation-based design procedure for overall energy optimisation/integration and emissions reduction. Literature experimental reaction data for the two technologies conduct an optimisation for biodiesel production. The state-of-the-art process flowsheets for the two processes were used for the study. This optimisation was done for the most affecting parameters on the production processes. The experimental results from the literature for the two techniques were optimally analysed using parameters analyse carried out using Pareto chart, contour plot methodology, and surface plot methodology. The research study revealed that the key process variable for the base-catalysed process was the catalyst loading. On the other hand, for the supercritical methanol process, the most prominent variable was the methanol to oil ratio. The optimal process conditions were used to build an ASPEN HYSYS rigorous simulation model for the previous techniques. The supercritical based-process was chosen for further studies for its better economic performance. Pinch Analysis principles through ASPEN Energy Analyser software were employed to analyse the energy performance of the overall optimum model obtained from ASPEN HYSYS. The energy targets were calculated for biodiesel production using supercritical methanol approach. Composite curves resulted in 3.4 and 3.7 MW for heating and cooling requirements, respectively compared with 4.4 and 4.7 MW for the original process. Finally, a heat exchanger network was developed to accomplish the energy targets proposed by the composite curves. The resulting integrated process flowsheet has better energy saving opportunities. The energy consumption of the optimum case has been reduced by 25 %, and thus substantial cut in the CO2 emissions. Utility curves were also generated to determine the loads of hot utilities to be produced by the proposed energy integration.
url https://www.cetjournal.it/index.php/cet/article/view/3848
work_keys_str_mv AT nmfarrag reactionparametersandenergyoptimisationforbiodieselproductionusingasupercriticalprocess
AT magadalla reactionparametersandenergyoptimisationforbiodieselproductionusingasupercriticalprocess
AT mkfouad reactionparametersandenergyoptimisationforbiodieselproductionusingasupercriticalprocess
_version_ 1724260610834694144