PENGGUNAAN ALGORITHMA APRIORI DATA MINING UNTUK MENGETAHUI TINGKATKESETIAAN KONSUMEN (BRAND LOYALITY) TERHADAP MEREK KENDERAAN BERMOTOR (STUDI KASUS DEALER HONDA RUMBAI)

<p><strong>Abstrak</strong><br />Algoritma yang umum digunakan dalam proses pencarian frequent itemset (data yang paling sering muncul) adalah Apriori. Tetapi Algoritma Apriori mempunyai memiliki kekurangan yaitu membutuhkan waktu yang lama dalam proses pencarian frequent ite...

Full description

Bibliographic Details
Main Author: Wirdah Choiriah
Format: Article
Language:Indonesian
Published: Universitas Lancang Kuning 2016-02-01
Series:Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Online Access:https://ejurnal.unilak.ac.id/index.php/dz/article/view/183
id doaj-f08bfa69e18f44c08e086471ad36884e
record_format Article
spelling doaj-f08bfa69e18f44c08e086471ad36884e2020-11-25T01:40:36ZindUniversitas Lancang KuningDigital Zone: Jurnal Teknologi Informasi dan Komunikasi2086-48842477-32552016-02-01714452175PENGGUNAAN ALGORITHMA APRIORI DATA MINING UNTUK MENGETAHUI TINGKATKESETIAAN KONSUMEN (BRAND LOYALITY) TERHADAP MEREK KENDERAAN BERMOTOR (STUDI KASUS DEALER HONDA RUMBAI)Wirdah Choiriah0Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Lancang Kuning<p><strong>Abstrak</strong><br />Algoritma yang umum digunakan dalam proses pencarian frequent itemset (data yang paling sering muncul) adalah Apriori. Tetapi Algoritma Apriori mempunyai memiliki kekurangan yaitu membutuhkan waktu yang lama dalam proses pencarian frequent itemset. Dengan memanfaatkan data Transaksi konsumen yang dihubungkan dengan pola kesetiaan konsumen terhadap merek kenderaan bermotor Honda maka pola hubungan keduanya melalui teknik data mining, association rule. Kategori profesi, jenis kelamin konsumen dan merek kenderaan bermotor di ukur dengan parameter pada tingkat ketertarikan konsumen terhadap merek kenderaan yang di sajikan. Algoritma yang digunakan adalah algoritma apriori, informasi yang ditampilkan berupa nilai support dan confidence dari masing-masing kategori.</p><p><strong>Kata kunci:</strong> data mining, association rule, data transaksi, algoritma apriori, support, confidence.</p><p><strong>Abstract</strong><br />The algorithm is commonly used in the process of finding frequent itemset (data that most often comes up) is Apriori. But the Apriori algorithm has a disadvantage that has take a long time in the process of finding frequent itemset. By utilizing the data consumer transactions associated with patterns of consumer loyalty to the brand Yamaha motor vehicles then their relationship patterns through data mining techniques, association rule. Professional category, gender consumers and brand of motor vehicles on the parameters measured by the level of consumer interest in the brand vehicles are at present. The algorithm used is a priori algorithm, the information displayed in the form of support and confidence values of each category.</p><p><strong>Keywords:</strong> data mining, association rule, transaction data, apriori algorithm, support, confidence.</p>https://ejurnal.unilak.ac.id/index.php/dz/article/view/183
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Wirdah Choiriah
spellingShingle Wirdah Choiriah
PENGGUNAAN ALGORITHMA APRIORI DATA MINING UNTUK MENGETAHUI TINGKATKESETIAAN KONSUMEN (BRAND LOYALITY) TERHADAP MEREK KENDERAAN BERMOTOR (STUDI KASUS DEALER HONDA RUMBAI)
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
author_facet Wirdah Choiriah
author_sort Wirdah Choiriah
title PENGGUNAAN ALGORITHMA APRIORI DATA MINING UNTUK MENGETAHUI TINGKATKESETIAAN KONSUMEN (BRAND LOYALITY) TERHADAP MEREK KENDERAAN BERMOTOR (STUDI KASUS DEALER HONDA RUMBAI)
title_short PENGGUNAAN ALGORITHMA APRIORI DATA MINING UNTUK MENGETAHUI TINGKATKESETIAAN KONSUMEN (BRAND LOYALITY) TERHADAP MEREK KENDERAAN BERMOTOR (STUDI KASUS DEALER HONDA RUMBAI)
title_full PENGGUNAAN ALGORITHMA APRIORI DATA MINING UNTUK MENGETAHUI TINGKATKESETIAAN KONSUMEN (BRAND LOYALITY) TERHADAP MEREK KENDERAAN BERMOTOR (STUDI KASUS DEALER HONDA RUMBAI)
title_fullStr PENGGUNAAN ALGORITHMA APRIORI DATA MINING UNTUK MENGETAHUI TINGKATKESETIAAN KONSUMEN (BRAND LOYALITY) TERHADAP MEREK KENDERAAN BERMOTOR (STUDI KASUS DEALER HONDA RUMBAI)
title_full_unstemmed PENGGUNAAN ALGORITHMA APRIORI DATA MINING UNTUK MENGETAHUI TINGKATKESETIAAN KONSUMEN (BRAND LOYALITY) TERHADAP MEREK KENDERAAN BERMOTOR (STUDI KASUS DEALER HONDA RUMBAI)
title_sort penggunaan algorithma apriori data mining untuk mengetahui tingkatkesetiaan konsumen (brand loyality) terhadap merek kenderaan bermotor (studi kasus dealer honda rumbai)
publisher Universitas Lancang Kuning
series Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
issn 2086-4884
2477-3255
publishDate 2016-02-01
description <p><strong>Abstrak</strong><br />Algoritma yang umum digunakan dalam proses pencarian frequent itemset (data yang paling sering muncul) adalah Apriori. Tetapi Algoritma Apriori mempunyai memiliki kekurangan yaitu membutuhkan waktu yang lama dalam proses pencarian frequent itemset. Dengan memanfaatkan data Transaksi konsumen yang dihubungkan dengan pola kesetiaan konsumen terhadap merek kenderaan bermotor Honda maka pola hubungan keduanya melalui teknik data mining, association rule. Kategori profesi, jenis kelamin konsumen dan merek kenderaan bermotor di ukur dengan parameter pada tingkat ketertarikan konsumen terhadap merek kenderaan yang di sajikan. Algoritma yang digunakan adalah algoritma apriori, informasi yang ditampilkan berupa nilai support dan confidence dari masing-masing kategori.</p><p><strong>Kata kunci:</strong> data mining, association rule, data transaksi, algoritma apriori, support, confidence.</p><p><strong>Abstract</strong><br />The algorithm is commonly used in the process of finding frequent itemset (data that most often comes up) is Apriori. But the Apriori algorithm has a disadvantage that has take a long time in the process of finding frequent itemset. By utilizing the data consumer transactions associated with patterns of consumer loyalty to the brand Yamaha motor vehicles then their relationship patterns through data mining techniques, association rule. Professional category, gender consumers and brand of motor vehicles on the parameters measured by the level of consumer interest in the brand vehicles are at present. The algorithm used is a priori algorithm, the information displayed in the form of support and confidence values of each category.</p><p><strong>Keywords:</strong> data mining, association rule, transaction data, apriori algorithm, support, confidence.</p>
url https://ejurnal.unilak.ac.id/index.php/dz/article/view/183
work_keys_str_mv AT wirdahchoiriah penggunaanalgorithmaaprioridatamininguntukmengetahuitingkatkesetiaankonsumenbrandloyalityterhadapmerekkenderaanbermotorstudikasusdealerhondarumbai
_version_ 1725044666383990784