An Evolutionary Analytic Method of Multi-DOF Nonlinear Coupling Dynamic Model for Controllable Close-Chain Linkage Mechanism System
The 2-DOF controllable close-chain linkage mechanism is investigated in this paper. Based on the characteristics of the multi-DOF nonlinear coupling dynamic equation of the system established by the finite element method, an analytic method of multiple-scales Newmark is presented after thinking abou...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2011-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2011/254547 |
Summary: | The 2-DOF controllable close-chain linkage mechanism is investigated in this paper. Based on the characteristics of the multi-DOF nonlinear coupling dynamic equation of the system established by the finite element method, an analytic method of multiple-scales Newmark is presented after thinking about the method of perturbation and the method of numerical analysis. Firstly, the first-order approximate solution of the dynamic responses of the system at the time of t is calculated by the multiple scales method. Then, taken the first-order approximate solution as the initialization of the generalized coordinate of the system, the stable dynamic response of the system is obtained by the implicit Newmark method. The simulation and experimental results are given in the end. The studies indicate that the method of multiple-scales Newmark is correct and practicable to study the dynamic characteristics of such kind of multi-DOF nonlinear coupling system. |
---|---|
ISSN: | 1024-123X 1563-5147 |