Axion monodromy inflation, trapping mechanisms and the swampland
Abstract We study the effects of particle production on the evolution of the inflaton field in an axion monodromy model with the goal of discovering in which situations the resulting dynamics will be consistent with the swampland constraints. In the presence of a modulated potential the evolving bac...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-02-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-021-08960-w |
id |
doaj-f06bf9a9c6804971a3e7b7e996bf233b |
---|---|
record_format |
Article |
spelling |
doaj-f06bf9a9c6804971a3e7b7e996bf233b2021-02-21T12:43:39ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522021-02-0181211010.1140/epjc/s10052-021-08960-wAxion monodromy inflation, trapping mechanisms and the swamplandWeijie Jin0Robert Brandenberger1Lavinia Heisenberg2Institute of Theoretical Physics, ETH ZürichInstitute of Theoretical Physics, ETH ZürichInstitute of Theoretical Physics, ETH ZürichAbstract We study the effects of particle production on the evolution of the inflaton field in an axion monodromy model with the goal of discovering in which situations the resulting dynamics will be consistent with the swampland constraints. In the presence of a modulated potential the evolving background field (solution of the inflaton homogeneous in space) induces the production of long wavelength inflaton fluctuation modes. However, this either has a negligible effect on the inflaton dynamics (if the field spacing between local minima of the modulated potential is large), or else it traps the inflaton in a local minimum and leads to a graceful exit problem. On the other hand, the production of moduli fields at enhanced symmetry points can lead to a realization of trapped inflation consistent with the swampland constraints, as long as the coupling between the inflaton and the moduli fields is sufficiently large.https://doi.org/10.1140/epjc/s10052-021-08960-w |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Weijie Jin Robert Brandenberger Lavinia Heisenberg |
spellingShingle |
Weijie Jin Robert Brandenberger Lavinia Heisenberg Axion monodromy inflation, trapping mechanisms and the swampland European Physical Journal C: Particles and Fields |
author_facet |
Weijie Jin Robert Brandenberger Lavinia Heisenberg |
author_sort |
Weijie Jin |
title |
Axion monodromy inflation, trapping mechanisms and the swampland |
title_short |
Axion monodromy inflation, trapping mechanisms and the swampland |
title_full |
Axion monodromy inflation, trapping mechanisms and the swampland |
title_fullStr |
Axion monodromy inflation, trapping mechanisms and the swampland |
title_full_unstemmed |
Axion monodromy inflation, trapping mechanisms and the swampland |
title_sort |
axion monodromy inflation, trapping mechanisms and the swampland |
publisher |
SpringerOpen |
series |
European Physical Journal C: Particles and Fields |
issn |
1434-6044 1434-6052 |
publishDate |
2021-02-01 |
description |
Abstract We study the effects of particle production on the evolution of the inflaton field in an axion monodromy model with the goal of discovering in which situations the resulting dynamics will be consistent with the swampland constraints. In the presence of a modulated potential the evolving background field (solution of the inflaton homogeneous in space) induces the production of long wavelength inflaton fluctuation modes. However, this either has a negligible effect on the inflaton dynamics (if the field spacing between local minima of the modulated potential is large), or else it traps the inflaton in a local minimum and leads to a graceful exit problem. On the other hand, the production of moduli fields at enhanced symmetry points can lead to a realization of trapped inflation consistent with the swampland constraints, as long as the coupling between the inflaton and the moduli fields is sufficiently large. |
url |
https://doi.org/10.1140/epjc/s10052-021-08960-w |
work_keys_str_mv |
AT weijiejin axionmonodromyinflationtrappingmechanismsandtheswampland AT robertbrandenberger axionmonodromyinflationtrappingmechanismsandtheswampland AT laviniaheisenberg axionmonodromyinflationtrappingmechanismsandtheswampland |
_version_ |
1724257866976591872 |