ANÁLISIS DE DIAGNÓSTICO EN EL MODELO DE REGRESIÓN LOGÍSTICA: UNA APLICACIÓN
Logistic regression is a multivariate technique very important for its applications in different areas of knowingness and its applications has been growing more. In clinical and epidemiological research, in particular in a study coronary illness, analysis of logistic regression has been applied for...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Nacional Mayor de San Marcos
2014-09-01
|
Series: | Pesquimat |
Subjects: | |
Online Access: | http://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9431 |
id |
doaj-f066cf3d6a2d48cb9fd341ea40fd8b69 |
---|---|
record_format |
Article |
spelling |
doaj-f066cf3d6a2d48cb9fd341ea40fd8b692020-11-24T23:31:33ZspaUniversidad Nacional Mayor de San MarcosPesquimat1560-912X1609-84392014-09-0110110.15381/pes.v10i1.94318421ANÁLISIS DE DIAGNÓSTICO EN EL MODELO DE REGRESIÓN LOGÍSTICA: UNA APLICACIÓNOlga Solano Dávíla0Agustina Ramírez Torres1Félix Manuel Bartolo Gotarate2Orlando Giraldo Laguna3Alfredo Salinas Moreno4Facultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúFacultad de Ciencias Naturales de la Universidad Nacional Federico Villarreal – Lima - PerúFacultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúFacultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúFacultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúLogistic regression is a multivariate technique very important for its applications in different areas of knowingness and its applications has been growing more. In clinical and epidemiological research, in particular in a study coronary illness, analysis of logistic regression has been applied for first time around 60 years old (lB) . In studies of logistic regression, it is frequent that a group of observations can be outliers. In the construction of logistic regression models is important to examine the observations to detect the existence of one or more observations that is controlling important properties of the modelo We present a discussion on diagnostic to logistic regression model (5), on factors of risk in illness of bone.http://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9431Técnica multivariantemodelo de regresión logística múltipleanálisis de diagnósticoanálisis de residuosanálisis de influencia. |
collection |
DOAJ |
language |
Spanish |
format |
Article |
sources |
DOAJ |
author |
Olga Solano Dávíla Agustina Ramírez Torres Félix Manuel Bartolo Gotarate Orlando Giraldo Laguna Alfredo Salinas Moreno |
spellingShingle |
Olga Solano Dávíla Agustina Ramírez Torres Félix Manuel Bartolo Gotarate Orlando Giraldo Laguna Alfredo Salinas Moreno ANÁLISIS DE DIAGNÓSTICO EN EL MODELO DE REGRESIÓN LOGÍSTICA: UNA APLICACIÓN Pesquimat Técnica multivariante modelo de regresión logística múltiple análisis de diagnóstico análisis de residuos análisis de influencia. |
author_facet |
Olga Solano Dávíla Agustina Ramírez Torres Félix Manuel Bartolo Gotarate Orlando Giraldo Laguna Alfredo Salinas Moreno |
author_sort |
Olga Solano Dávíla |
title |
ANÁLISIS DE DIAGNÓSTICO EN EL MODELO DE REGRESIÓN LOGÍSTICA: UNA APLICACIÓN |
title_short |
ANÁLISIS DE DIAGNÓSTICO EN EL MODELO DE REGRESIÓN LOGÍSTICA: UNA APLICACIÓN |
title_full |
ANÁLISIS DE DIAGNÓSTICO EN EL MODELO DE REGRESIÓN LOGÍSTICA: UNA APLICACIÓN |
title_fullStr |
ANÁLISIS DE DIAGNÓSTICO EN EL MODELO DE REGRESIÓN LOGÍSTICA: UNA APLICACIÓN |
title_full_unstemmed |
ANÁLISIS DE DIAGNÓSTICO EN EL MODELO DE REGRESIÓN LOGÍSTICA: UNA APLICACIÓN |
title_sort |
análisis de diagnóstico en el modelo de regresión logística: una aplicación |
publisher |
Universidad Nacional Mayor de San Marcos |
series |
Pesquimat |
issn |
1560-912X 1609-8439 |
publishDate |
2014-09-01 |
description |
Logistic regression is a multivariate technique very important for its applications in different areas of knowingness and its applications has been growing more. In clinical and epidemiological research, in particular in a study coronary illness, analysis of logistic regression has been applied for first time around 60 years old (lB) . In studies of logistic regression, it is frequent that a group of observations can be outliers. In the construction of logistic regression models is important to examine the observations to detect the existence of one or more observations that is controlling important properties of the modelo We present a discussion on diagnostic to logistic regression model (5), on factors of risk in illness of bone. |
topic |
Técnica multivariante modelo de regresión logística múltiple análisis de diagnóstico análisis de residuos análisis de influencia. |
url |
http://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9431 |
work_keys_str_mv |
AT olgasolanodavila analisisdediagnosticoenelmodeloderegresionlogisticaunaaplicacion AT agustinaramireztorres analisisdediagnosticoenelmodeloderegresionlogisticaunaaplicacion AT felixmanuelbartologotarate analisisdediagnosticoenelmodeloderegresionlogisticaunaaplicacion AT orlandogiraldolaguna analisisdediagnosticoenelmodeloderegresionlogisticaunaaplicacion AT alfredosalinasmoreno analisisdediagnosticoenelmodeloderegresionlogisticaunaaplicacion |
_version_ |
1725537416136097792 |