Encounters with Vortices in a Turbine Nozzle Passage

Experiments were conducted on the flow through a transonic turbine cascade. Secondary flows and a wide range of vortex types were encountered, including horseshoe vortices, shock-induced passage vortices, and streamwise vortices on the suction surface. In the separation region on the suction surface...

Full description

Bibliographic Details
Main Authors: J. P. Gostelow, A. Mahallati, W. E. Carscallen, A. Rona
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2012/928623
Description
Summary:Experiments were conducted on the flow through a transonic turbine cascade. Secondary flows and a wide range of vortex types were encountered, including horseshoe vortices, shock-induced passage vortices, and streamwise vortices on the suction surface. In the separation region on the suction surface, a large rollup of passage vorticity occurred. The blunt leading edge gave rise to strong horseshoe vortices and secondary flows. The suction surface had a strong convex curvature over the forward portion and was quite flat further downstream. Surface flow visualization was performed and this convex surface displayed coherent streamwise vorticity. At subsonic speeds, strong von Kármán vortex shedding resulted in a substantial base pressure deficit. For these conditions, time-resolved measurements were made of the Eckert-Weise energy separation in the blade wake. At transonic speeds, exotic shedding modes were observed. These phenomena all occurred in experiments on the flow around one particular turbine nozzle vane in a linear cascade.
ISSN:1023-621X
1542-3034