Oscillation and Nonoscillation of Asymptotically Almost Periodic Half-Linear Difference Equations
We analyse half-linear difference equations with asymptotically almost periodic coefficients. Using the adapted Riccati transformation, we prove that these equations are conditionally oscillatory. We explicitly find a constant, determined by the coefficients of a given equation, which is the borderl...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/432936 |
Summary: | We analyse half-linear difference equations with asymptotically almost periodic coefficients. Using the adapted Riccati transformation, we prove that these equations are conditionally oscillatory. We explicitly find a constant, determined by the coefficients of a given equation, which is the borderline between the oscillation and the nonoscillation of the equation. We also mention corollaries of our result with several examples. |
---|---|
ISSN: | 1085-3375 1687-0409 |