Systems of Inequalities Characterizing Ring Homomorphisms
Assume that T:P→R and U:P→R are arbitrary mappings between two partially ordered rings P and R. We study a few systems of functional inequalities which characterize ring homomorphisms. For example, we prove that if T and U satisfy T(f+g)≥T(f)+T(g), U(f·g)≥U(f)·U(g), for all f,g∈P and T≥U, then U=T...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2016/8069104 |