Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle
Selection of finishing beef cattle for slaughter and evaluation of performance is currently achieved through visual assessment and/or by weighing through a crush. Consequently, large numbers of cattle are not meeting target specification at the abattoir. Video imaging analysis (VIA) is increasingly...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-05-01
|
Series: | Frontiers in Sustainable Food Systems |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fsufs.2019.00030/full |
id |
doaj-f034565179c94214a61d09132fd9510e |
---|---|
record_format |
Article |
spelling |
doaj-f034565179c94214a61d09132fd9510e2020-11-25T03:23:14ZengFrontiers Media S.A.Frontiers in Sustainable Food Systems2571-581X2019-05-01310.3389/fsufs.2019.00030433373Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef CattleGemma A. Miller0James J. Hyslop1David Barclay2Andrew Edwards3William Thomson4Carol-Anne Duthie5Future Farming Systems, Scotland's Rural College, Edinburgh, United KingdomSAC Consulting Ltd., SRUC, Edinburgh, United KingdomInnovent Technology Ltd., Turriff, United KingdomRitchie Ltd., Forfar, United KingdomHarbro Ltd., Turriff, United KingdomFuture Farming Systems, Scotland's Rural College, Edinburgh, United KingdomSelection of finishing beef cattle for slaughter and evaluation of performance is currently achieved through visual assessment and/or by weighing through a crush. Consequently, large numbers of cattle are not meeting target specification at the abattoir. Video imaging analysis (VIA) is increasingly used in abattoirs to grade carcasses with high accuracy. There is potential for three-dimensional (3D) imaging to be used on farm to predict carcass characteristics of live animals and to optimise slaughter selections. The objectives of this study were to predict liveweight (LW) and carcass characteristics of live animals using 3D imaging technology and machine learning algorithms (artificial neural networks). Three dimensional images and LW's were passively collected from finishing steer and heifer beef cattle of a variety of breeds pre-slaughter (either on farm or after entry to the abattoir lairage) using an automated camera system. Sixty potential predictor variables were automatically extracted from the live animal 3D images using bespoke algorithms; these variables included lengths, heights, widths, areas, volumes, and ratios and were used to develop predictive models for liveweight and carcass characteristics. Cold carcass weights (CCW) for each animal were provided by the abattoir. Saleable meat yield (SMY) and EUROP fat and conformation grades were also determined for each individual by VIA of half of the carcass. Performance of prediction models was assessed using R2 and RMSE parameters following regression of predicted and actual variables for LW (R2 = 0.7, RMSE = 42), CCW (R2 = 0.88, RMSE = 14) and SMY (R2 = 0.72, RMSE = 14). The models predicted EUROP fat and conformation grades with 54 and 55% accuracy (R2), respectively. This study demonstrated that 3D imaging coupled with machine learning analytics can be used to predict LW, SMY and traditional carcass characteristics of live animals. This system presents an opportunity to reduce a considerable inefficiency in beef production enterprises through autonomous monitoring of finishing cattle on the farm and marketing of animals at the optimal time.https://www.frontiersin.org/article/10.3389/fsufs.2019.00030/fullfinishing beef cattle3D imagingcarcass characteristicsmachine learningprecision livestock farming |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gemma A. Miller James J. Hyslop David Barclay Andrew Edwards William Thomson Carol-Anne Duthie |
spellingShingle |
Gemma A. Miller James J. Hyslop David Barclay Andrew Edwards William Thomson Carol-Anne Duthie Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle Frontiers in Sustainable Food Systems finishing beef cattle 3D imaging carcass characteristics machine learning precision livestock farming |
author_facet |
Gemma A. Miller James J. Hyslop David Barclay Andrew Edwards William Thomson Carol-Anne Duthie |
author_sort |
Gemma A. Miller |
title |
Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle |
title_short |
Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle |
title_full |
Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle |
title_fullStr |
Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle |
title_full_unstemmed |
Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle |
title_sort |
using 3d imaging and machine learning to predict liveweight and carcass characteristics of live finishing beef cattle |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Sustainable Food Systems |
issn |
2571-581X |
publishDate |
2019-05-01 |
description |
Selection of finishing beef cattle for slaughter and evaluation of performance is currently achieved through visual assessment and/or by weighing through a crush. Consequently, large numbers of cattle are not meeting target specification at the abattoir. Video imaging analysis (VIA) is increasingly used in abattoirs to grade carcasses with high accuracy. There is potential for three-dimensional (3D) imaging to be used on farm to predict carcass characteristics of live animals and to optimise slaughter selections. The objectives of this study were to predict liveweight (LW) and carcass characteristics of live animals using 3D imaging technology and machine learning algorithms (artificial neural networks). Three dimensional images and LW's were passively collected from finishing steer and heifer beef cattle of a variety of breeds pre-slaughter (either on farm or after entry to the abattoir lairage) using an automated camera system. Sixty potential predictor variables were automatically extracted from the live animal 3D images using bespoke algorithms; these variables included lengths, heights, widths, areas, volumes, and ratios and were used to develop predictive models for liveweight and carcass characteristics. Cold carcass weights (CCW) for each animal were provided by the abattoir. Saleable meat yield (SMY) and EUROP fat and conformation grades were also determined for each individual by VIA of half of the carcass. Performance of prediction models was assessed using R2 and RMSE parameters following regression of predicted and actual variables for LW (R2 = 0.7, RMSE = 42), CCW (R2 = 0.88, RMSE = 14) and SMY (R2 = 0.72, RMSE = 14). The models predicted EUROP fat and conformation grades with 54 and 55% accuracy (R2), respectively. This study demonstrated that 3D imaging coupled with machine learning analytics can be used to predict LW, SMY and traditional carcass characteristics of live animals. This system presents an opportunity to reduce a considerable inefficiency in beef production enterprises through autonomous monitoring of finishing cattle on the farm and marketing of animals at the optimal time. |
topic |
finishing beef cattle 3D imaging carcass characteristics machine learning precision livestock farming |
url |
https://www.frontiersin.org/article/10.3389/fsufs.2019.00030/full |
work_keys_str_mv |
AT gemmaamiller using3dimagingandmachinelearningtopredictliveweightandcarcasscharacteristicsoflivefinishingbeefcattle AT jamesjhyslop using3dimagingandmachinelearningtopredictliveweightandcarcasscharacteristicsoflivefinishingbeefcattle AT davidbarclay using3dimagingandmachinelearningtopredictliveweightandcarcasscharacteristicsoflivefinishingbeefcattle AT andrewedwards using3dimagingandmachinelearningtopredictliveweightandcarcasscharacteristicsoflivefinishingbeefcattle AT williamthomson using3dimagingandmachinelearningtopredictliveweightandcarcasscharacteristicsoflivefinishingbeefcattle AT carolanneduthie using3dimagingandmachinelearningtopredictliveweightandcarcasscharacteristicsoflivefinishingbeefcattle |
_version_ |
1724606693504974848 |