On some classes of generalized Schrödinger equations

Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + ∑i=2m$\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi de...

Full description

Bibliographic Details
Main Authors: Correa Leão Amanda S. S., Morbach Joelma, Santos Andrelino V., Santos Júnior João R.
Format: Article
Language:English
Published: De Gruyter 2020-08-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2020-0104
id doaj-f011960c8b4a473fa826e3aca7fd68b4
record_format Article
spelling doaj-f011960c8b4a473fa826e3aca7fd68b42021-09-06T19:39:56ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2020-08-0110152253310.1515/anona-2020-0104anona-2020-0104On some classes of generalized Schrödinger equationsCorrea Leão Amanda S. S.0Morbach Joelma1Santos Andrelino V.2Santos Júnior João R.3Faculdade de Matemática, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Avenida Augusto corrêa 01, 66075-110, Belém, PA, BrazilFaculdade de Matemática, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Avenida Augusto corrêa 01, 66075-110, Belém, PA, BrazilFaculdade de Matemática, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Avenida Augusto corrêa 01, 66075-110, Belém, PA, BrazilFaculdade de Matemática, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Avenida Augusto corrêa 01, 66075-110, Belém, PA, BrazilSome classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + ∑i=2m$\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.https://doi.org/10.1515/anona-2020-0104generalized schrödinger problemsmultiplicity of solutionsnehari manifold35j1035j2535j60
collection DOAJ
language English
format Article
sources DOAJ
author Correa Leão Amanda S. S.
Morbach Joelma
Santos Andrelino V.
Santos Júnior João R.
spellingShingle Correa Leão Amanda S. S.
Morbach Joelma
Santos Andrelino V.
Santos Júnior João R.
On some classes of generalized Schrödinger equations
Advances in Nonlinear Analysis
generalized schrödinger problems
multiplicity of solutions
nehari manifold
35j10
35j25
35j60
author_facet Correa Leão Amanda S. S.
Morbach Joelma
Santos Andrelino V.
Santos Júnior João R.
author_sort Correa Leão Amanda S. S.
title On some classes of generalized Schrödinger equations
title_short On some classes of generalized Schrödinger equations
title_full On some classes of generalized Schrödinger equations
title_fullStr On some classes of generalized Schrödinger equations
title_full_unstemmed On some classes of generalized Schrödinger equations
title_sort on some classes of generalized schrödinger equations
publisher De Gruyter
series Advances in Nonlinear Analysis
issn 2191-9496
2191-950X
publishDate 2020-08-01
description Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + ∑i=2m$\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.
topic generalized schrödinger problems
multiplicity of solutions
nehari manifold
35j10
35j25
35j60
url https://doi.org/10.1515/anona-2020-0104
work_keys_str_mv AT correaleaoamandass onsomeclassesofgeneralizedschrodingerequations
AT morbachjoelma onsomeclassesofgeneralizedschrodingerequations
AT santosandrelinov onsomeclassesofgeneralizedschrodingerequations
AT santosjuniorjoaor onsomeclassesofgeneralizedschrodingerequations
_version_ 1717769736074297344