On some classes of generalized Schrödinger equations
Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + ∑i=2m$\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi de...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-08-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2020-0104 |
id |
doaj-f011960c8b4a473fa826e3aca7fd68b4 |
---|---|
record_format |
Article |
spelling |
doaj-f011960c8b4a473fa826e3aca7fd68b42021-09-06T19:39:56ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2020-08-0110152253310.1515/anona-2020-0104anona-2020-0104On some classes of generalized Schrödinger equationsCorrea Leão Amanda S. S.0Morbach Joelma1Santos Andrelino V.2Santos Júnior João R.3Faculdade de Matemática, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Avenida Augusto corrêa 01, 66075-110, Belém, PA, BrazilFaculdade de Matemática, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Avenida Augusto corrêa 01, 66075-110, Belém, PA, BrazilFaculdade de Matemática, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Avenida Augusto corrêa 01, 66075-110, Belém, PA, BrazilFaculdade de Matemática, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Avenida Augusto corrêa 01, 66075-110, Belém, PA, BrazilSome classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + ∑i=2m$\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.https://doi.org/10.1515/anona-2020-0104generalized schrödinger problemsmultiplicity of solutionsnehari manifold35j1035j2535j60 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Correa Leão Amanda S. S. Morbach Joelma Santos Andrelino V. Santos Júnior João R. |
spellingShingle |
Correa Leão Amanda S. S. Morbach Joelma Santos Andrelino V. Santos Júnior João R. On some classes of generalized Schrödinger equations Advances in Nonlinear Analysis generalized schrödinger problems multiplicity of solutions nehari manifold 35j10 35j25 35j60 |
author_facet |
Correa Leão Amanda S. S. Morbach Joelma Santos Andrelino V. Santos Júnior João R. |
author_sort |
Correa Leão Amanda S. S. |
title |
On some classes of generalized Schrödinger equations |
title_short |
On some classes of generalized Schrödinger equations |
title_full |
On some classes of generalized Schrödinger equations |
title_fullStr |
On some classes of generalized Schrödinger equations |
title_full_unstemmed |
On some classes of generalized Schrödinger equations |
title_sort |
on some classes of generalized schrödinger equations |
publisher |
De Gruyter |
series |
Advances in Nonlinear Analysis |
issn |
2191-9496 2191-950X |
publishDate |
2020-08-01 |
description |
Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + ∑i=2m$\begin{array}{}
\sum_{i=2}^{m}
\end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition. |
topic |
generalized schrödinger problems multiplicity of solutions nehari manifold 35j10 35j25 35j60 |
url |
https://doi.org/10.1515/anona-2020-0104 |
work_keys_str_mv |
AT correaleaoamandass onsomeclassesofgeneralizedschrodingerequations AT morbachjoelma onsomeclassesofgeneralizedschrodingerequations AT santosandrelinov onsomeclassesofgeneralizedschrodingerequations AT santosjuniorjoaor onsomeclassesofgeneralizedschrodingerequations |
_version_ |
1717769736074297344 |