An Approach for Prediction of Acute Hypotensive Episodes via the Hilbert-Huang Transform and Multiple Genetic Programming Classifier

Acute hypotensive episodes (AHEs) are one of the hemodynamic instabilities with high mortality rate that is frequent among many groups of patients. This study presents a methodology to predict AHE for ICU patients based on big data time series. The experimental data we used is mean arterial pressure...

Full description

Bibliographic Details
Main Authors: Dazhi Jiang, Liyu Li, Bo Hu, Zhun Fan
Format: Article
Language:English
Published: SAGE Publishing 2015-08-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2015/354807
Description
Summary:Acute hypotensive episodes (AHEs) are one of the hemodynamic instabilities with high mortality rate that is frequent among many groups of patients. This study presents a methodology to predict AHE for ICU patients based on big data time series. The experimental data we used is mean arterial pressure (MAP), which is transformed from arterial blood pressure (ABP) data. Then, the Hilbert-Huang transform method was used to calculate patient's MAP time series and some features, which are the bandwidth of the amplitude modulation, the frequency modulation, and the power of intrinsic mode function (IMF), were extracted. Finally, the multiple genetic programming (Multi-GP) is used to build the classification models for detection of AHE. The methodology is applied in the datasets of the 10th PhysioNet and Computers Cardiology Challenge in 2009 and Multiparameter Intelligent Monitoring for Intensive Care (MIMIC-II). We achieve the accuracy of 83.33% in the training set and 91.89% in the testing set of the 2009 challenge's dataset and the 84.13% in the training set and 82.41% in the testing set of the MIMIC-II dataset.
ISSN:1550-1477