The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration
Continued developments in instrumentation and modeling have driven progress in monitoring methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-01-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/12/1/107 |
id |
doaj-efe890ce92034349a7fccd2bbb29bd96 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rodrigo Rivera Martinez Diego Santaren Olivier Laurent Ford Cropley Cécile Mallet Michel Ramonet Christopher Caldow Leonard Rivier Gregoire Broquet Caroline Bouchet Catherine Juery Philippe Ciais |
spellingShingle |
Rodrigo Rivera Martinez Diego Santaren Olivier Laurent Ford Cropley Cécile Mallet Michel Ramonet Christopher Caldow Leonard Rivier Gregoire Broquet Caroline Bouchet Catherine Juery Philippe Ciais The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration Atmosphere low-cost sensors artificial neural networks methane calibration |
author_facet |
Rodrigo Rivera Martinez Diego Santaren Olivier Laurent Ford Cropley Cécile Mallet Michel Ramonet Christopher Caldow Leonard Rivier Gregoire Broquet Caroline Bouchet Catherine Juery Philippe Ciais |
author_sort |
Rodrigo Rivera Martinez |
title |
The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration |
title_short |
The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration |
title_full |
The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration |
title_fullStr |
The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration |
title_full_unstemmed |
The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration |
title_sort |
potential of low-cost tin-oxide sensors combined with machine learning for estimating atmospheric <i>ch</i><sub>4</sub> variations around background concentration |
publisher |
MDPI AG |
series |
Atmosphere |
issn |
2073-4433 |
publishDate |
2021-01-01 |
description |
Continued developments in instrumentation and modeling have driven progress in monitoring methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>) emissions at a range of spatial scales. The sites that emit <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> such as landfills, oil and gas extraction or storage infrastructure, intensive livestock farms account for a large share of global emissions, and need to be monitored on a continuous basis to verify the effectiveness of reductions policies. Low cost sensors are valuable to monitor methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>) around such facilities because they can be deployed in a large number to sample atmospheric plumes and retrieve emission rates using dispersion models. Here we present two tests of three different versions of Figaro<sup>®</sup> TGS tin-oxide sensors for estimating <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> concentrations variations, at levels similar to current atmospheric values, with a sought accuracy of 0.1 to 0.2 ppm. In the first test, we characterize the variation of the resistance of the tin-oxide semi-conducting sensors to controlled levels of <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>CO</mi></semantics></math></inline-formula> in the laboratory, to analyze cross-sensitivities. In the second test, we reconstruct observed <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> variations in a room, that ranged from 1.9 and 2.4 ppm during a three month experiment from observed time series of resistances and other variables. To do so, a machine learning model is trained against true <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> recorded by a high precision instrument. The machine-learning model using 30% of the data for training reconstructs <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> within the target accuracy of 0.1 ppm only if training variables are representative of conditions during the testing period. The model-derived sensitivities of the sensors resistance to <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></semantics></math></inline-formula> compared to <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> are larger than those observed under controlled conditions, which deserves further characterization of all the factors influencing the resistance of the sensors. |
topic |
low-cost sensors artificial neural networks methane calibration |
url |
https://www.mdpi.com/2073-4433/12/1/107 |
work_keys_str_mv |
AT rodrigoriveramartinez thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT diegosantaren thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT olivierlaurent thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT fordcropley thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT cecilemallet thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT michelramonet thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT christophercaldow thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT leonardrivier thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT gregoirebroquet thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT carolinebouchet thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT catherinejuery thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT philippeciais thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT rodrigoriveramartinez potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT diegosantaren potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT olivierlaurent potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT fordcropley potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT cecilemallet potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT michelramonet potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT christophercaldow potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT leonardrivier potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT gregoirebroquet potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT carolinebouchet potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT catherinejuery potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration AT philippeciais potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration |
_version_ |
1724338753709801472 |
spelling |
doaj-efe890ce92034349a7fccd2bbb29bd962021-01-14T00:01:54ZengMDPI AGAtmosphere2073-44332021-01-011210710710.3390/atmos12010107The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background ConcentrationRodrigo Rivera Martinez0Diego Santaren1Olivier Laurent2Ford Cropley3Cécile Mallet4Michel Ramonet5Christopher Caldow6Leonard Rivier7Gregoire Broquet8Caroline Bouchet9Catherine Juery10Philippe Ciais11Laboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire Atmosphères Milieux, Observations Spatiales (LATMOS), UMR8190, CNRS/INSU, IPSL, Universite de Versailles Saint-Quentin-en-Yvelines (UVSQ), Quartier des Garennes, 11 Boulevard d’Alembert, 78280 Guyancourt, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceSUEZ, Smart & Environmental Solutions, Tour CB21, 16 Place de l’Iris, 92040 La Defense, FranceTotal Raffinage Chimie, Laboratoire Qualite de l’Air, 69360 Solaize, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceContinued developments in instrumentation and modeling have driven progress in monitoring methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>) emissions at a range of spatial scales. The sites that emit <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> such as landfills, oil and gas extraction or storage infrastructure, intensive livestock farms account for a large share of global emissions, and need to be monitored on a continuous basis to verify the effectiveness of reductions policies. Low cost sensors are valuable to monitor methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>) around such facilities because they can be deployed in a large number to sample atmospheric plumes and retrieve emission rates using dispersion models. Here we present two tests of three different versions of Figaro<sup>®</sup> TGS tin-oxide sensors for estimating <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> concentrations variations, at levels similar to current atmospheric values, with a sought accuracy of 0.1 to 0.2 ppm. In the first test, we characterize the variation of the resistance of the tin-oxide semi-conducting sensors to controlled levels of <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>CO</mi></semantics></math></inline-formula> in the laboratory, to analyze cross-sensitivities. In the second test, we reconstruct observed <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> variations in a room, that ranged from 1.9 and 2.4 ppm during a three month experiment from observed time series of resistances and other variables. To do so, a machine learning model is trained against true <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> recorded by a high precision instrument. The machine-learning model using 30% of the data for training reconstructs <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> within the target accuracy of 0.1 ppm only if training variables are representative of conditions during the testing period. The model-derived sensitivities of the sensors resistance to <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></semantics></math></inline-formula> compared to <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> are larger than those observed under controlled conditions, which deserves further characterization of all the factors influencing the resistance of the sensors.https://www.mdpi.com/2073-4433/12/1/107low-cost sensorsartificial neural networksmethanecalibration |