The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration

Continued developments in instrumentation and modeling have driven progress in monitoring methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>...

Full description

Bibliographic Details
Main Authors: Rodrigo Rivera Martinez, Diego Santaren, Olivier Laurent, Ford Cropley, Cécile Mallet, Michel Ramonet, Christopher Caldow, Leonard Rivier, Gregoire Broquet, Caroline Bouchet, Catherine Juery, Philippe Ciais
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/12/1/107
id doaj-efe890ce92034349a7fccd2bbb29bd96
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Rodrigo Rivera Martinez
Diego Santaren
Olivier Laurent
Ford Cropley
Cécile Mallet
Michel Ramonet
Christopher Caldow
Leonard Rivier
Gregoire Broquet
Caroline Bouchet
Catherine Juery
Philippe Ciais
spellingShingle Rodrigo Rivera Martinez
Diego Santaren
Olivier Laurent
Ford Cropley
Cécile Mallet
Michel Ramonet
Christopher Caldow
Leonard Rivier
Gregoire Broquet
Caroline Bouchet
Catherine Juery
Philippe Ciais
The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration
Atmosphere
low-cost sensors
artificial neural networks
methane
calibration
author_facet Rodrigo Rivera Martinez
Diego Santaren
Olivier Laurent
Ford Cropley
Cécile Mallet
Michel Ramonet
Christopher Caldow
Leonard Rivier
Gregoire Broquet
Caroline Bouchet
Catherine Juery
Philippe Ciais
author_sort Rodrigo Rivera Martinez
title The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration
title_short The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration
title_full The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration
title_fullStr The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration
title_full_unstemmed The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background Concentration
title_sort potential of low-cost tin-oxide sensors combined with machine learning for estimating atmospheric <i>ch</i><sub>4</sub> variations around background concentration
publisher MDPI AG
series Atmosphere
issn 2073-4433
publishDate 2021-01-01
description Continued developments in instrumentation and modeling have driven progress in monitoring methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>) emissions at a range of spatial scales. The sites that emit <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> such as landfills, oil and gas extraction or storage infrastructure, intensive livestock farms account for a large share of global emissions, and need to be monitored on a continuous basis to verify the effectiveness of reductions policies. Low cost sensors are valuable to monitor methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>) around such facilities because they can be deployed in a large number to sample atmospheric plumes and retrieve emission rates using dispersion models. Here we present two tests of three different versions of Figaro<sup>®</sup> TGS tin-oxide sensors for estimating <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> concentrations variations, at levels similar to current atmospheric values, with a sought accuracy of 0.1 to 0.2 ppm. In the first test, we characterize the variation of the resistance of the tin-oxide semi-conducting sensors to controlled levels of <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>CO</mi></semantics></math></inline-formula> in the laboratory, to analyze cross-sensitivities. In the second test, we reconstruct observed <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> variations in a room, that ranged from 1.9 and 2.4 ppm during a three month experiment from observed time series of resistances and other variables. To do so, a machine learning model is trained against true <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> recorded by a high precision instrument. The machine-learning model using 30% of the data for training reconstructs <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> within the target accuracy of 0.1 ppm only if training variables are representative of conditions during the testing period. The model-derived sensitivities of the sensors resistance to <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></semantics></math></inline-formula> compared to <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> are larger than those observed under controlled conditions, which deserves further characterization of all the factors influencing the resistance of the sensors.
topic low-cost sensors
artificial neural networks
methane
calibration
url https://www.mdpi.com/2073-4433/12/1/107
work_keys_str_mv AT rodrigoriveramartinez thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT diegosantaren thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT olivierlaurent thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT fordcropley thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT cecilemallet thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT michelramonet thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT christophercaldow thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT leonardrivier thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT gregoirebroquet thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT carolinebouchet thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT catherinejuery thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT philippeciais thepotentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT rodrigoriveramartinez potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT diegosantaren potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT olivierlaurent potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT fordcropley potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT cecilemallet potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT michelramonet potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT christophercaldow potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT leonardrivier potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT gregoirebroquet potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT carolinebouchet potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT catherinejuery potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
AT philippeciais potentialoflowcosttinoxidesensorscombinedwithmachinelearningforestimatingatmosphericichisub4subvariationsaroundbackgroundconcentration
_version_ 1724338753709801472
spelling doaj-efe890ce92034349a7fccd2bbb29bd962021-01-14T00:01:54ZengMDPI AGAtmosphere2073-44332021-01-011210710710.3390/atmos12010107The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric <i>CH</i><sub>4</sub> Variations around Background ConcentrationRodrigo Rivera Martinez0Diego Santaren1Olivier Laurent2Ford Cropley3Cécile Mallet4Michel Ramonet5Christopher Caldow6Leonard Rivier7Gregoire Broquet8Caroline Bouchet9Catherine Juery10Philippe Ciais11Laboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire Atmosphères Milieux, Observations Spatiales (LATMOS), UMR8190, CNRS/INSU, IPSL, Universite de Versailles Saint-Quentin-en-Yvelines (UVSQ), Quartier des Garennes, 11 Boulevard d’Alembert, 78280 Guyancourt, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceSUEZ, Smart & Environmental Solutions, Tour CB21, 16 Place de l’Iris, 92040 La Defense, FranceTotal Raffinage Chimie, Laboratoire Qualite de l’Air, 69360 Solaize, FranceLaboratoire des Sciences du Climat et de l’Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceContinued developments in instrumentation and modeling have driven progress in monitoring methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>) emissions at a range of spatial scales. The sites that emit <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> such as landfills, oil and gas extraction or storage infrastructure, intensive livestock farms account for a large share of global emissions, and need to be monitored on a continuous basis to verify the effectiveness of reductions policies. Low cost sensors are valuable to monitor methane (<inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>) around such facilities because they can be deployed in a large number to sample atmospheric plumes and retrieve emission rates using dispersion models. Here we present two tests of three different versions of Figaro<sup>®</sup> TGS tin-oxide sensors for estimating <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> concentrations variations, at levels similar to current atmospheric values, with a sought accuracy of 0.1 to 0.2 ppm. In the first test, we characterize the variation of the resistance of the tin-oxide semi-conducting sensors to controlled levels of <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>CO</mi></semantics></math></inline-formula> in the laboratory, to analyze cross-sensitivities. In the second test, we reconstruct observed <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> variations in a room, that ranged from 1.9 and 2.4 ppm during a three month experiment from observed time series of resistances and other variables. To do so, a machine learning model is trained against true <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> recorded by a high precision instrument. The machine-learning model using 30% of the data for training reconstructs <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> within the target accuracy of 0.1 ppm only if training variables are representative of conditions during the testing period. The model-derived sensitivities of the sensors resistance to <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></semantics></math></inline-formula> compared to <inline-formula><math display="inline"><semantics><msub><mi>CH</mi><mn>4</mn></msub></semantics></math></inline-formula> are larger than those observed under controlled conditions, which deserves further characterization of all the factors influencing the resistance of the sensors.https://www.mdpi.com/2073-4433/12/1/107low-cost sensorsartificial neural networksmethanecalibration