Using Magnetic Resonance for Predicting Femoral Strength: Added Value with respect to Bone Densitometry
Background and Purpose. To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength. Material and Methods. Bone mineral density (BMD) of eighteen femur specimens was assessed with pQC...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | BioMed Research International |
Online Access: | http://dx.doi.org/10.1155/2015/801518 |
Summary: | Background and Purpose. To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength. Material and Methods. Bone mineral density (BMD) of eighteen femur specimens was assessed with pQCT, DXA, and MRI (using ultrashort echo times (UTE) and the MicroView software). Subsequently biomechanical testing was performed to assess failure load. Simple and multiple linear regression were used with failure load as the dependent variable. Results. Simple linear regression allowed a prediction of failure load with either pQCT, DXA, or MRI in an r2 range of 0.41–0.48. Multiple linear regression with pQCT, DXA, and MRI yielded the best prediction (r2=0.68). Conclusions. The accuracy of MRI, using UTE and MicroView software, to predict femoral strength compares well with that of pQCT or DXA. Furthermore, the inclusion of MRI in a multiple-regression model yields the best prediction. |
---|---|
ISSN: | 2314-6133 2314-6141 |