Automatic Diagnosis of Microgrid Networks’ Power Device Faults Based on Stacked Denoising Autoencoders and Adaptive Affinity Propagation Clustering

This paper presents a model based on stacked denoising autoencoders (SDAEs) in deep learning and adaptive affinity propagation (adAP) for bearing fault diagnosis automatically. First, SDAEs are used to extract potential fault features and directly reduce their high dimension to 3. To prove that the...

Full description

Bibliographic Details
Main Authors: Fan Xu, Xin Shu, Xiaodi Zhang, Bo Fan
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/8509142
Description
Summary:This paper presents a model based on stacked denoising autoencoders (SDAEs) in deep learning and adaptive affinity propagation (adAP) for bearing fault diagnosis automatically. First, SDAEs are used to extract potential fault features and directly reduce their high dimension to 3. To prove that the feature extraction capability of SDAEs is better than stacked autoencoders (SAEs), principal component analysis (PCA) is employed to compare and reduce their dimension to 3, except for the final hidden layer. Hence, the extracted 3-dimensional features are chosen as the input for adAP cluster models. Compared with other traditional cluster methods, such as the Fuzzy C-mean (FCM), Gustafson–Kessel (GK), Gath–Geva (GG), and affinity propagation (AP), clustering algorithms can identify fault samples without cluster center number selection. However, AP needs to set two key parameters depending on manual experience—the damping factor and the bias parameter—before its calculation. To overcome this drawback, adAP is introduced in this paper. The adAP clustering algorithm can find the available parameters according to the fitness function automatic. Finally, the experimental results prove that SDAEs with adAP are better than other models, including SDAE-FCM/GK/GG according to the cluster assess index (Silhouette) and the classification error rate.
ISSN:1076-2787
1099-0526