Physical-Layer Security in Orbital Angular Momentum Multiplexing Free-Space Optical Communications

The physical-layer security of a line-of-sight (LOS) free-space optical (FSO) link using orbital angular momentum (OAM) multiplexing is studied. We discuss the effect of atmospheric turbulence to OAM-multiplexed FSO channels. We numerically simulate the propagation of OAM-multiplexed beam and study...

Full description

Bibliographic Details
Main Authors: Xiaole Sun, Ivan B. Djordjevic
Format: Article
Language:English
Published: IEEE 2016-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/7386572/
Description
Summary:The physical-layer security of a line-of-sight (LOS) free-space optical (FSO) link using orbital angular momentum (OAM) multiplexing is studied. We discuss the effect of atmospheric turbulence to OAM-multiplexed FSO channels. We numerically simulate the propagation of OAM-multiplexed beam and study the secrecy capacity. We show that, under certain conditions, the OAM multiplexing technique provides higher security over a single-mode transmission channel in terms of the total secrecy capacity and the probability of achieving a secure communication. We also study the power cost effect at the transmitter side for both fixed system power and equal channel power scenarios.
ISSN:1943-0655