Ant colony optimization as a descriptor selection in QSPR modeling: Estimation of the λmax of anthraquinones-based dyes

Quantitative structure–property relationship (QSPR) studies based on ant colony optimization (ACO) were carried out for the prediction of λmax of 9,10-anthraquinone derivatives. ACO is a meta-heuristic algorithm, which is derived from the observation of real ants and proposed to feature selection. A...

Full description

Bibliographic Details
Main Authors: Morteza Atabati, Kobra Zarei, Azam Borhani
Format: Article
Language:English
Published: Elsevier 2016-09-01
Series:Journal of Saudi Chemical Society
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1319610313000422
Description
Summary:Quantitative structure–property relationship (QSPR) studies based on ant colony optimization (ACO) were carried out for the prediction of λmax of 9,10-anthraquinone derivatives. ACO is a meta-heuristic algorithm, which is derived from the observation of real ants and proposed to feature selection. After optimization of 3D geometry of structures by the semi-empirical quantum-chemical calculation at AM1 level, different descriptors were calculated by the HyperChem and Dragon softwares (1514 descriptors). A major problem of QSPR is the high dimensionality of the descriptor space; therefore, descriptor selection is the most important step. In this paper, an ACO algorithm was used to select the best descriptors. Then selected descriptors were applied for model development using multiple linear regression. The average absolute relative deviation and correlation coefficient for the calibration set were obtained as 3.3% and 0.9591, respectively, while the average absolute relative deviation and correlation coefficient for the prediction set were obtained as 5.0% and 0.9526, respectively. The results showed that the applied procedure is suitable for prediction of λmax of 9,10-anthraquinone derivatives.
ISSN:1319-6103