Highly efficient nickel (II) removal by sewage sludge biochar supported α-Fe2O3 and α-FeOOH: Sorption characteristics and mechanisms.

A novel approach was employed to load α-Fe2O3 and α-FeOOH onto sewage sludge biochar (SBC) with the purpose of efficient nickel (Ni) removal. A high Ni(II) adsorption capacity of 35.50 mg·g-1 in 100 ppm Ni(II) solution with 10 mg modified sewage sludge biochar (MSBC) was achieved. The adsorption kin...

Full description

Bibliographic Details
Main Authors: Lie Yang, Liuyang He, Jianming Xue, Li Wu, Yongfei Ma, Hong Li, Pai Peng, Ming Li, Zulin Zhang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0218114
Description
Summary:A novel approach was employed to load α-Fe2O3 and α-FeOOH onto sewage sludge biochar (SBC) with the purpose of efficient nickel (Ni) removal. A high Ni(II) adsorption capacity of 35.50 mg·g-1 in 100 ppm Ni(II) solution with 10 mg modified sewage sludge biochar (MSBC) was achieved. The adsorption kinetic and isotherm were fitted well by the pseudo-second-order model and the Langmuir model, respectively. The optimal pH was found around a neutral pH of 7. The adsorption mechanisms of Ni(II) onto MSBC were described as the synergistic effects of electrostatic attraction, ion exchange, inner-sphere complexation and co-precipitation. The initial rapid adsorption phenomenon could be attributed to electrostatic attraction and ion exchange, and then inner-sphere complexation and co-precipitation acted as a crucial role in the following step. The remarkable performance of MSBC provides an effective waste utilization approach to simultaneous sewage sludge recycle and Ni removal from aqueous solution.
ISSN:1932-6203