Human Resource Allocation Based on Fuzzy Data Mining Algorithm

Data mining is currently a frontier research topic in the field of information and database technology. It is recognized as one of the most promising key technologies. Data mining involves multiple technologies, such as mathematical statistics, fuzzy theory, neural networks, and artificial intellige...

Full description

Bibliographic Details
Main Authors: You Wu, Zheng Wang, Shengqi Wang
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/9489114
Description
Summary:Data mining is currently a frontier research topic in the field of information and database technology. It is recognized as one of the most promising key technologies. Data mining involves multiple technologies, such as mathematical statistics, fuzzy theory, neural networks, and artificial intelligence, with relatively high technical content. The realization is also difficult. In this article, we have studied the basic concepts, processes, and algorithms of association rule mining technology. Aiming at large-scale database applications, in order to improve the efficiency of data mining, we proposed an incremental association rule mining algorithm based on clustering, that is, using fast clustering. First, the feasibility of realizing performance appraisal data mining is studied; then, the business process needed to realize the information system is analyzed, the business process-related links and the corresponding data input interface are designed, and then the data process to realize the data processing is designed, including data foundation and database model. Aiming at the high efficiency of large-scale database mining, database development tools are used to implement the specific system settings and program design of this algorithm. Incorporated into the human resource management system of colleges and universities, they carried out successful association broadcasting, realized visualization, and finally discovered valuable information.
ISSN:1099-0526